3D-IC technology for future detectors

Grzegorz Deptuch
on behalf of the FERMILAB ASIC design group
Raymond Yarema
Grzegorz Deptuch, Jim Hoff, Farah Khalid, Marcel Trimpl, Alpana Shenai, Tom Zimmerman

OUTLINE:
1) History and introduction
2) Why 3D-IC?
3) Key components for 3D-IC technology
4) 3D-IC at Fermilab
5) Roadmaps and summary
History and introduction

First electronic components allowing performing nonlinear functions were vacuum tubes. Construction of vacuum tubes was complex, their cost was high, but above all they were bulky (not good candidates for miniaturization). They are still loved by audiphiles for highest fidelity in sound. But 3D-IC belongs to solid state transistors.
History and introduction

First integrated circuit
(Texas Instruments 1958)

First transistor
(Bell Labs 1947)

Very soon we have two
and more transistors

2D integration technology
rules in electronics of
our days

More and more components, more and
more functions, growing complexity

Intel Xeon 6 core
microprocessor
1.9x10^9 transistors
History and introduction

1. Gate SiO2 Oxidation followed by Well, BPW Implantation
 - 80nm SOI

2. After Gate stack formation (with extension and sidewall formations)

3. BW(NSUB,PSUB) photo/etching and S/D, NSUB, PSUB Implantation

4. S/D annealing and Salicidation

5. 1st ILD filling and CMP planarization (after Salicide formation)

6. Contact etching (2CS for substrate and 2C for S/D and gate of transistor)

7. Contact plug filling and 1st Metal formation

8. BEOL (2 ~ 4th Metal formation) followed by Backside polishing and Metal coating

Example of a planar process flow

X-section of NMOS transistor seen in Scanning Resistance Microscope

2", 4", 6", 8" planar wafers
History and introduction

View of the same simple SRAM cell in 90nm, 65nm and 45nm process node

90nm – tall
1.0 μm²

65nm – wide
0.57 μm²

45nm – wide
w/ patterning enhancement 0.346 μm²

Interconnectivity is THE ISSUE!!!
Backplane of PDP-8I machine wire-wrapped

recent processes allow up to 10 interconnection metal layers
Why 3D-IC?

Die Photograph of the Itanium 2 MPU (~2/3 of Area is Cache Memory)

BEFORE

Intel Photo used as proxy

Only memory directly compatible with logic process (virtually no choice!)

maps to logic only die

AFTER: 3D IC rendering of 3D IC

14× increase in memory density
4× Logic Cost Reduction
29× → 100× memory cost reduction (choice!)

Single Die~ 430 mm² 2D IC “All or Nothing”
Wafer Cost ~ $6,000
Low yield ~ 15%, ~ 10 parts per wafer
memory costs ~ $44/MB

128MB not 9MB
memory costs ~ $1.50/MB → $0.44/MB

<table>
<thead>
<tr>
<th>Operation</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit ALU operation</td>
<td>5 pJ</td>
</tr>
<tr>
<td>32-bit register read</td>
<td>10 pJ</td>
</tr>
<tr>
<td>Read 32 bits from 8K RAM</td>
<td>50 pJ</td>
</tr>
<tr>
<td>Move 32 bits across 10mm chip</td>
<td>100 pJ</td>
</tr>
<tr>
<td>Move 32 bits off chip</td>
<td>1300 to 1900 pJ</td>
</tr>
</tbody>
</table>

Calculations using a 130nm process operating at a core voltage of 1.2V
(Source: Bill Dally, Stanford)

From Bob Patti Tezzaron
Why 3D-IC?

improvements to achieve using 3D-IC:

- reduced interconnect delays ($R\ L\ C$), higher clock rates,
- reduced interconnect capacitance (I/O pads), lower power dissipation,
- higher integration density, may go heterogeneous
- high bandwidth μ-processors
- merging different process technologies, mixed materials, system integration,
- advanced focal planes

Optimal repartition of functions
Why 3D-IC?

Real estate analogy

How much time, effort and energy (gas) is needed to communicate with your neighbors in 2D assembly?
Key components of 3D-IC technology

3D-IC definition

A chip in three-dimensional integrated circuit (3D-IC) technology is composed of two or more layers of active electronic components, integrated both vertically and horizontally.

3D-IC methods

Aggressive wafer thinning, through wafer/chip connectivity, back-side metalization and patterning, oxide or metal bonding (W-W, C-W, C-C)

Fermilab position in 3D-IC

Fermilab began exploring the technologies for 3D circuits in 2006. Fermilab is leading an Int’l Consortium (15 members) on 3D-IC for scientific applications, mainly HEP.

http://3dic.fnal.gov

Importance of 3D-IC in detectors

Not only more ‘transistors/μm²’, but 3D-IC methods lead to replacement of typical bump bonds and open new frontiers for detectors architectures.
Key components of 3D-IC technology

THROUGH SILICON VIAS (TSV)
3D-IC at Fermilab

Features:

- VIA-LAST process (*vias added to wafers after bonding and thinning*) – excludes large area for local interconnect in TSV locations
- Readily based on Silicon-on-Insulator process where presence of natural oxides acts as etch stoppers and bonding surfaces
- Potential use of heterogeneous wafers

Submissions:

Two generations of Vertically Integrated Pixel (VIP) readout chips with features for ILC detector vertex (run 3DM2 and 3DM3, 2006 and 2008 respectively)
3D-IC at Fermilab

VIP1 chip
MIT-LL 0.18μm process

Metal fill cut while dicing

~700 μm

~7 μm ~7 μm ~7 μm
3D-IC at Fermilab

Features:

- VIA-FIRST process (vias are part of the wafer processing inserted before or right after forming transistors) — metal interconnect lines are not excluded over TSV locations (TSVs 1.3 μm diameter, 3.8 μm rec. spacing and 6 μm depth),
- 8” wafers, large ~26×31 mm² reticule,
- W 6th metal used as a bond interface for face-face Cu-Cu thermo-compression bonding

Submissions:

3 fully functional prototypes from Fermilab together with 9 other subreticules from participating institutions submitted on a Fermi MPW run in 2009; currently ‘in fab’

0.13 μm bulk CMOS by Chartered with Tezzaron 3D via-first technology
3D-IC technology for future detectors, FNAL, 02/17/2009

3D-IC at Fermilab

- Access to the first commercially available 3D-IC process through Tezzaron excited creation of a consortium centered on Fermilab in late 2008. The consortium groups international laboratories and universities with interest in High Energy Physics for the development of 3D integrated circuits.

Consortium presently comprised of 15 members from 5 countries

- University at Bergamo
- University at Pavia
- University at Perugia
- INFN Bologna
- INFN at Pisa
- INFN at Rome
- CPPM, Marseilles
- IPHC, Strasbourg
- IRFU Saclay
- LAL, Orsay
- LPNHE, Paris
- CMP, Grenoble
- University of Bonn
- AGH University of Science & Technology, Poland
- Fermilab, Batavia

- Others contributing to first MPW
 - BNL, Brookhaven
 - LBNL, Berkeley

http://3dic.fnal.gov
3D-IC at Fermilab

- 3D chip has two tiers
- One set of masks used for both top and bottom tiers to reduce mask cost.
 - Identical wafers bonded face to face by Tezzaron.
 - Backside metallization by Tezzaron.
- Frame divided into 12 subreticules among consortium members
- More than 25 two-tier designs (circuits and test devices)
 - CMS strips, ATLAS pixels
 - ILC pixels
 - B factory pixels
 - X-ray imaging
 - Test circuits
 - Radiation
 - Cryogenic operation
 - Via and bonding reliability
 - SEU tolerance

Wafer Map
3D-IC technology for future detectors, FNAL, 02/17/2009

3D-IC at Fermilab

Test chips:
TX, TY
2.0 x 6.3 mm

frame organization:
• Top and bottom tiers fabricated on the same frame; vertical symmetry about the center of the frame for flipping one wafer over another and obtaining matching of circuits in 3D assembly,
• All designs initially submitted by mid-May 2009

Fermilab designs
• H = VICTR; short pixel readout chips realizing pT cut for implementation of L1 trigger embedded in tracker for CMS @ SLHC
• I = VIP2b; time stamping pixel readout chip for vertex detector @ ILC
• J = VIPIC; very high frame rate with sparsification pixel readout chip for X-ray Photon Correlation Spectroscopy @ light source

Subreticules:
A, B, C, D, E, F, G, H, I, J
5.5 x 6.3 mm

Full frame
0.13 μm
Chartered
Vertically Integrated CMS Tracker

- **How it works:**
 - Design employing the FEI4 ATLAS pixel front-end
 - Top tier looks for hits from long ϕ strips and bottom tier looks for coincidence between ϕ strips and shorter z strips connected to bottom tier.
 - Designed for 80 μm pitch sensors
 - Serial readout of all top and bottom strips along with coincidence information
 - Downloadable hit patterns
 - Fast OR outputs
 - Circuit to be thinned to 24 microns and connections made to both the top and bottom of the chip

Processes signals from 2 closely spaced parallel silicon strip sensor planes (ϕ and Z planes).
3D-IC at Fermilab
Vertically Integrated Pixel

VIP2B

- How it works:
 - Adapted from earlier MITLL designs in FDSOI technology
 - 192 × 192 array of 24 μm² pixels
 - 8 bit digital time stamp (Δt=3.9 μs)
 - Readout between ILC bunch trains of sparsified data
 - Sparsification based on token passing scheme
 - Single stage signal integrating front-end with 2 S/H circuits for analog signal output with CDS
 - Analog information available for improved resolution
 - Separate test input for every pixel cell
 - Serial output bus
 - Polarity switch for collection of e⁻ or h⁺

Signals are accumulated and time stamped using global Grey code counter
3D-IC at Fermilab

Vertically Integrated Photon Imaging Chip (VIPIC)

How it works:
- X-ray Photon Correlation Spectroscopy (XPCS) is a technique that is used at X-ray light sources to generate speckle patterns for the study of the dynamics in various equilibrium and non-equilibrium processes.
- The chip is divided into 16 groups of 256 pixels read out in parallel but through separate LVDS serial ports.
- Data sparsification is performed in each group.

Top view - bump bonding pads on the back of the digital tier.
3D-IC at Fermilab

Full separation of analog and digital achieved by dividing functionalities between tiers

1400 transistors / pixel

280 transistors / pixel

80 μm

Digital part of pixel

Analog part of pixel

Power supplies transferred between tiers; 25 connections between tiers for signals in each pixel
3D-IC at Fermilab

- detector/ROIC bonding; with **Ziptronix** low mass DBI bonding
- Conventional bumps or CuSn are expensive and not low mass fine pitch
3D-IC at Fermilab

Less aggressive mounting option

- fanout/routing on the detector; pads created on the detector, wire bonding to the pads on the detector to mount in the system

DBI bonding with Ziptronix (a form of oxide bonding)
3D-IC at Fermilab

ROIC to Sensor uses Direct bond interconnect

Sensor with wire bond fanout (300 um)

Circuit board

X-rays

Circuit board

Option 1 - Less Aggressive Mounting
3D-IC at Fermilab

Ultimate goal is:
first 4-side buttable detector system

- low density array of I/O pads available on the side of the readout chip - opposite to the detector; one side of the readout chip connected to the detector using DBI or similar bonding technique, second side used to mount the device on the support PCB with bump or stud bonding technique
Option 2 - More Aggressive Mounting for four side buttable sensor arrays
3D-IC technology for future detectors, FNAL, 02/17/2009

3D-IC roadmap

- 2007
- 2009
- 2012
- >2014

CMOS Image sensor (Sensor + DSP + RAM)

Image Sensor

Digital Signal Processor

Via size ~ 50μm

3D Stacked memory (NAND, DRAM, …)

Cache memory

CPU

Via size ~ 5-30μm

Logic (multicore processor with cache memory)

Via size = < 5μm

Vertical device on CMOS

Multi-level 3D IC

(CPU + cache + DRAM + Analog + RF + sensor + I/O)

Low density 3D via Chip-level bonding

High density 3D via wafer-level bonding

Vertical interconnect minimum pitch (μm)

0

1

10

100

1,000

Flip chip solder bump pitch

ITRS C65nm min Global metal pitch

EMC 3D European Technical Symposium
Minatec June 29th, 2007
Page 15
High-density I/O roadmap

Transistor scaling era is ending; growing in 3rd dimension is the future, first 3D packaging, then 3D integrated circuits

We are here now

3D-IC chips must be fabricated at wafer foundries, the role of packaging houses will be minimized

Source: Knickerbocker, IBM Journal of Research and Development. Vol. 52 No. 6 2008
Summary

3D-IC offers new approaches to old problems in detector development. New high density circuit bonding techniques, wafer thinning, and sub-\(\mu\)m size TSVs provide new opportunities for the detector designer.

Fermilab has been working with two different vendors for 3D chip fabrication. MIT LL is a via last SOI process using oxide wafer bonding. Tezzaron is a via first CMOS process using Cu-Cu wafer bonding.

Recently a new (third) 3D-IC technique has been explored with a new pixel chip submission to the OKI-SOI run within the SOIPIX collaboration that is based in KEK, Japan. The new bonding is based on ZyCube.

Chips are still in fab, except the first device, VIP1, that was fabricated in 2007; The prototype was tested and despite poor yield actual functionality was demonstrated.

The 3D-IC seems to be the avenue for future development in \(\mu\)electronics industry we hope to be able to maintain our R&D program.

Packaging industry is under revolution because of the transistor scaling era is ending and 3D-IC era with TSVs is beginning.
Backup1:

- 3D bonding technology to replace bump bonds in hybrid pixel assemblies.

- Bonding options being explored by Fermilab:
 - CuSn eutectic with RTI
 - Direct bond interconnect (DBI) using “magic metal” with Ziptronix. 3um pitch possible
 - CuCu fusion with Tezzaron

- Excellent strength and yield obtained with 7 um CuSn pillar on a 20 micron pitch.

However 10 um of CuSn covering 75% of bond area would represents Xo=0.075. Too high for some HEP applications.

- CuCu fusion and DBI offer the lowest mass bond required by many HEP experiments.
Backup2:

Electrical and mechanical bonds

1) Bonding between Die/Wafers
 a) Adhesive bond
 b) Oxide bond (SiO2 to SiO2)
 c) CuSn Eutectic
 d) Cu thermocompression
 e) DBI (Direct Bond Interconnect)

For (a) and (b), electrical connections between layers are formed after bonding. For (c), (d), and (e), the electrical and mechanical bonds are formed at the same time.
VIP1 designed in 3 tier MIT-LL 0.18 μm SOI process

VIP1 / VIP2a

VIP1 found to be functional. Architecture proven but: VIP1 Yield was low.
VIP2a designed to improve yield through: increased sizes of FD SoI transistors, improved power distribution, wider traces and redundant vias among other things at expense of larger, 30 um, pixel size
VIP2a is in fabrication
Focus has shifted from working in FD SOI to bulk CMOS processes