

FPIX2: A Pixel Readout Chip with 840 Mb/s IO bandwidth

A. Mekkaoui, J. Hoff, D. Christian, R. Yarema

Fermilab, Batavia IL.

FPIX2 Overview

- 0.25µ CMOS, using radiation tolerant layout.
- 128 rows x 22 columns 50µ x 400µ pixels.
- The only supply voltages required are 2.5V and ground; all other bias voltages, bias currents, and threshold voltages are generated by programmable DAC's.
- Very high speed, data driven, zero-suppressed readout <u>no</u> <u>trigger; every hit is read out</u>.
- Readout off chip is point-to-point, using a configurable number of 140 Mb/s serial links (1,2,4, or 6). A 10m cable length is expected.
- Because of the large disparity in occupancy, a programmable number of IO line will result in a large reduction in system cost and complexity (less cables, less power, smaller DAC system).
- LVDS I/O is used throughout, including "Resets" and slow control; a single row of pads is used.

FPIX2 Block Diagram

All circuit blocks have been tested in a series of small chips.

FPIX2 Layout

Pixel Cells (four 50 x 400 um cells)

 $-12 \ \mu m \ bump \ pads$

Pixel Unit Cell

FPIX2: Version A,B and C

We exploited the opportunity of an Engineering run to implement 2 different flavors of our original front-end cell. The original was designed to work in 2 different processes. Modifications were aimed at optimizing the design for the TSMC process.

Version A:

- \Rightarrow Base line design.
- \Rightarrow Successfully tested
- \Rightarrow Radiation hardness beyond 30 Mrad(Si).
- \Rightarrow Exists as a 32X18 array in 2 different 0.25 μ processes.

Version B:

- \Rightarrow Same preamplifier as in version A.
- \Rightarrow Modified second stage and discriminator.

Version C:

- \Rightarrow Modified Preamplifier with higher gain (lower Cf).
- \Rightarrow Added unity buffer between 1st and 2nd stage.
- \Rightarrow Modified 2nd stage and discriminators as in Ver. B

Results at a glance

=> Version A worked as expected.

 \Rightarrow Version B and C worked almost as expected except for some oscillation problems when biased at nominal conditions. Origin of problem still under investigation.

 \Rightarrow Readout and control performed as expected in all versions.

 \Rightarrow Readout bandwidth of more than 840Mb/s achieved.

 \Rightarrow No Xtalk observed. Analog performance independent of number of communication lines used (1,2,4 or 6).

 \Rightarrow The following test results are for non-hybridized chips (0 input cap).

 \Rightarrow Hybridized chips expected end of June.

Version A low signal response

Default setup. Buffered second stage output

Version A: large signal response

=> Dynamic range can be increased by increasing Vref (at the expense of timewalk). No averaging.

Ver. A: Return to baseline control

 \Rightarrow Feature used to decrease "analog" dead time for very high occupancy chips.

Version A: Time-Walk

 \Rightarrow Required TimeWalk < 132ns. Can be decreased at the expense Of more power.

Version C low signal response

Ver. C: Return to baseline control

=> Less control range than in A. This is due to non-optimum bias conditions.

Version C: Time-Walk

TimeWalk=103ns. Higher than expected because of non optimal bias conditions

Version A: Threshold distribution

17

A. Mekkaoui

Version A: Noise distribution

Version B: Threshold distribution

Version B: Noise distribution

=> Noise Same as in A (same preamp).

Version C: Threshold distribution

=> Close to a factor of 2 improvement over Version A.

Version C: Noise distribution

A different subject: Data Output

- Data is driven off of a hit pixel onto the Core output bus, which is 23 bits wide. The data word consists of the information generated in the pixel unit cell (7 bit row number, and 3 bit ADC value), plus a 5 bit column number and an 8 bit BCO number, which are added by the end of column logic.
- The Data Output Interface latches data from the Core output bus on the *rising* edge of the readout clock, serializes the data, and drives it off chip.

Output Data Format

• Five bits are used to encode 22 columns. The column numbering scheme has no column number ending in 00. This ensures that a data word can never have 0's in $b_{01} - b_{13}$. This feature distinguishes a data word from a sync/status word.

•Synchronization between the FPIX2 and the Pixel Data Combiner Board is established and maintained using the "sync/status" word. Whenever no data is available for output, the FPIX2 transmits the sync/status word. At least two sync/status words are guaranteed to be output every time the column number decreases. In addition, 23 bit hit data is transferred using a 24 bit word. The PDCB uses the word mark bit as a sync check on every word transfer.

Data Output Interface

Programming Interface

- Each FPIX2 has a chip id, which is set by wire bonds on internal bond pads.
- I/O is bussed on three pairs of lines: shift control, shift in, shift out.
- I/O is synchronous clocked by the BCO clock.
- Commands can be addressed to a single chip, or broadcast to all chips on the bus.

Command Format

Programming Interface Instructions

- Write (followed by 2, 8, or 2816 bits of data)
- Set (all bits in register = 1)
- Read
- Reset (all bits in register = 0)
- Default (set register to default value)

Registers and DAC's

- 22 of 32 possible registers are used.
- 14 are 8 bit registers that control Digital to Analog Converters used to set bias currents and voltages, and comparator thresholds.
- 2 are serpentine registers (kill and inject) running up and down the pixel columns, with 1 bit in each pixel.
- 6 control facets of chip operation (# of output pairs, BCO sync check, SendData, RejectHits, Core Reset, Programming Reset).

Conclusions

- \Rightarrow We successfully designed a full "quasi" final pixel readout chip for BTeV.
- \Rightarrow Design based on proven radiation-hard circuits. These circuits also proved to be very adequate as far as SEU is concerned.
- \Rightarrow Readout speed and features allow fast non-triggered operation.
- \Rightarrow Programmable features allow flexibility in optimizing the system for cost, simplicity or performance.
- \Rightarrow 3 different versions to evaluate during the next beam test.
- \Rightarrow Only feature(optional) to be added is an on-chip "pulse generator".

More Information

- http://www-btev.fnal.gov/public/hep/detector/pixel/index.shtml
- "Radiation tolerance of prototype BTeV pixel detector readout chips" G. Chiodini, et al. FERMILAB-CONF-02-147-E (7/02).
- "Development of a readout technique for the high data rate BTeV pixel detector at Fermilab" B.K. Hall, et al. FERMILAB-CONF-01-335 (11/01).
- "Radiation tolerant circuits designed in two commercial 0.25µ CMOS processes" A. Mekkaoui, et al. FERMILAB-CONF-01-026-E (3/01).
- "FPIX2: A radiation-hard pixel readout chip for BTeV" D. Christian, et al. NIMA 473:152-156, 2001.
- "PreFPIX2: Core architecture and results" J. Hoff, et al. IEEE Trans.Nucl.Sci. 48:485-292, 2001.