MAMBO III User Manual

Version: 1.0

Farah Khalid Alpana Shenai Gregory Deptuch

Microelectronics ASIC Design

# **1. OVERVIEW**

#### Monolithic Active Matrix with Binary Counters (MAMBO)

The MAMBO III top chip contains a matrix of  $44 \times 44$  pixels, each of  $100 \times 100 \mu m^2$ . Each pixel contains analogue functionality accomplished by a charge preamplifier, CR-RC<sup>2</sup> Shaper and a baseline restorer. It also contains a window comparator with upper and lower thresholds which can be individually trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit counter which is reconfigured as a shift register to serially output the data from the entire ASIC.

The MAMBO III lower ASIC contains gated diodes which can be controlled to improve performance such as leakage current. It contains a small p-plus region with a large buried P-well (BPW), almost the same size as the pixel to obtain a parallel electric field in active volume and avoid any potential pockets that may alter charge transport. It is also effectively shielded to electrically isolate the detector from the electronics.

The ZyCube 3D integration process is used to bond the detector in the lower tier to the electronics in the upper tier. This separates the functions of charge generation and charge processing to two SOI layers. Thus eliminating the direct coupling paths, thereby removing transient interferences at the input of the preamplifier. Built upon prior experience of the MAMBO chip, a charge-signal processing chain is designed for the MAMBO III top ASIC. It was submitted on the OKI SOI MPW run in January 2010.



#### 2. MAMBO III Bottom ASIC

#### 2.1 Layout



Figure 1 Diode pixel

MAMBO III bottom ASIC pixel contains gated diodes. The diode is covered with metal1, by controlling the voltage of the metal1 layer the performance of the diode such as leakage current can be modified. It contains a small p-plus region with a large buried P-well (BPW), almost the same size as the pixel to obtain a parallel electric field in active volume and avoid any potential pockets that may alter charge transport Each pixel is  $100x100\mu m^2$  with a 5x5  $\mu m^2$  3D bump bond pad which has a 2x2  $\mu m^2$  3D bump bond contact. It is also effectively shielded to electrically isolate the detector from the electronics.



Figure 2 MAMBO III Bottom ASIC

The MAMBOIII Bottom ASIC is a 5 x 5  $\text{mm}^2$  ASIC and has a matrix of 44 x 44 diode pixels. It is surrounded by 4 guard rings, three P-type and one N-type. The rings are connected to pads on the top ASIC through 3D bump bond connections. There are no pad openings on this ASIC. All connections are made through alignment of bump bond pads with the top ASIC.

### 3. MAMBO III Top ASIC

## **3.1 Block Diagram**



Figure 3 Pixel Block diagram

The signal processing chain of the pixel consists of a charge preamplifer, a shaping amplifier, a baseline restorer, trimming DACs, window comparator, double discriminator logic and a 12 bit counter which can be reconfigured as a shift register. It also has an analogue buffer and digital buffer used exclusively for testing. The configuration register and its associated digital logic control all the test settings for the pixel.

#### **3.2 Schematics**

#### 3.2.1 Preamplifier



Figure 4 Preamplifier

A single stage, single ended amplifier in a regulated cascade configuration is used as the charge preamplifier. It has a feedback capacitance of Cfs=5fF, an active feedback resistance of Rfs=28M $\Omega$ , the input transistor Gm=6.5 $\mu$ S, the coupling capacitance to the shaper Cc=35fF and channel capacitance Ch=25fF.

The test setup includes a test capacitance of Ct = 1.7fF connected on one end to the input through a switch which is ON for calibration and testing phase. Two transmission gates are connected on the other end of the test capacitance. These are connected to in\_test\_1 and in\_test\_2 and controlled by strobe1 and strobe2 signals respectively. The calibration circuit produces a square wave signal of small amplitude Vt, which applied to the test capacitor Ct generates short current pulses of well controlled charge Qin = Ct × Vt at the input of the CSA. The amplitude Vt is equal to the difference of voltage on in\_test\_1 and in\_test\_2.

The calibration procedure requires following steps:

1) Set the voltages on the In\_test\_1 and In\_test\_2 , e. g.: In\_test\_1 =500 mV, In\_test\_1 =700mV, resulting in the difference equal to 200 mV that is equivalent to the photon energy of 8 keV.

2) Using the configuration register select the pixel, to which the pulse should be sent,

3) Using the strobe1 and strobe2 lines trigger the calibration circuit (each trigger means one injected pulse to a given pixel). Strobe1 and Strobe2 are non overlapping pulses to be generated off chip by the FPGA.

There is a protection diode at gate of the input transistor to prevent damage while testing.

#### 3.2.2 Shaper and Baseline restorer



The shaper is also based on a single ended regulated cascade design. The preamplifier and shaper combination forms a two-stage semi-gaussian  $CR-RC^2$  filter. The baseline restorer is used to reduce DC-level dispersions at the input of the comparator.



**Figure 6 Comparator** 

Source followers isolate the comparator from the shaper. The output from the trimming DAC cancels the offset at the input of the differential pair of the amplifier. One input of the amplifier is always connected to the shaper output.

During normal operation the other input is connected to the reference voltage (in\_vref), when the comparator is being trimmed to cancel offsets it is connected to the externally generated bias baseline and when the pixel is disabled or during analogue testing it is connected to gnd!

#### 3.2.4 Window comparator and double discriminator logic

The window comparator is shown in figure it consists of two comparators where, VthL is the Lower Threshold, VthH is the Upper Threshold.

VthL < Signals < VthH is recorded as HIT

Comparators are independently trimmed to cancel offsets.



The double discriminator logic uses the output of the two comparators for further processing.





The output of the lower threshold comparator behaves as a clock. The output of the upper threshold comparator behaves as a reset. If both the comparators fire the hit is discarded. The figure below shows the output waveform.



Figure 9 DDL output waveform



Figure 10 A 4 bit current steering DAC

The Current steering DAC consists of cascaded binary weighted current mirrors arranged in conventional symmetrical common centroid geometry. This helps in matching and averaging out global errors. The switches are also binary weighted so that all the current mirrors have equal loading. Matching is critical for monotonic performance of the DAC. The current can be steered to either to the positive or negative terminal. The minimum current of 2nA is used, however this can be increased externally if the offset is more than a few millivolts.

#### 3.2.6 Counter /Shift register



Figure 11 Counter/ Shift Register

Consists of a 12 bit ripple counter, the output of the DDL is the clock for the counter. A switch disconnects the counter from the window comparator while shifting. An external clock CK\_READ is used for shifting data.

#### 3.2.7 Configuration register and test control logic

An 11 bit configuration register is used to setup the operation of each pixel. The data is input serially as shown in the figure alongside using the serial clk. It is then loaded onto a latch using the parallel load signal. 2 x 4bits are used for setting of the two trimming DACs. The rest 3 bits are used by test control logic to setup the pixel for the right mode of operation. The setup configuration for bits b<2:0> is shown in table below. It consists of a 3-8 bit decoder and additional combinational logic to control switches.

| octup                                                                                                 | FlipFlop2          |
|-------------------------------------------------------------------------------------------------------|--------------------|
| 000 Normal Operation                                                                                  |                    |
| 001 Analogue Output for test calibration                                                              |                    |
| 010 Test Input, counter connected                                                                     | FlipFlop1          |
| 011 Calibrate DAC L                                                                                   |                    |
| 100 Calibrate DAC H                                                                                   | Serial C           |
| 101 xx Fig                                                                                            | gure 12 Configurat |
| 110 xx                                                                                                |                    |
| 111 Pixel Disabled                                                                                    |                    |
| SETUP<br>B2SETUP<br>B1SETUP<br>B0DAC<br>H0DAC<br>H1DAC<br>H2DAC<br>DAC<br>H3DAC<br>DAC<br>L0DAC<br>L1 | DAC DAC<br>L2 L3   |

#### FlipFlop2 FlipFlop2 FlipFlop1 FlipFlop1 FlipFlop1 FlipFlop1 FlipFlop1 FlipFlop1 FlipFlop1 FlipFlop2 FlipFlop2

FlipFlop11

Latch11

#### 3.2.8 Analog Buffer

The analogue buffer is used only for test purposes hence it is disconnected during normal operation. Only one pixel can be tested at a time, hence only one analogue buffer is enabled. The tail current of the buffer is disconnected when it is not in use such that the power consumption of the ASIC is minimized.



Figure 13 Analogue buffer

Source followers are used for signal conditioning. The buffer is a single stage amplifier with  $10\mu A$  of tail current. It has a gain of about 50dB.

#### **3.3 Layout**

The pixel is 100 x 100  $\mu$ m<sup>2</sup> in size, arranged in a matrix of 44 x 44 pixels. Each column consists of a biasing block and digital buffering of control signals.



Figure 14 Pixel Layout

Figure 15 MAMBO III Top ASIC

# 4. 3D Integration

#### 4.1 In- Pixel detector connection

The pixel in the top ASIC is connected to the pixel in the bottom ASIC using 3D bumps. There is a single 3D bump contact to the diode and 10 additional dummy contacts to give us a contact density of 0.4% per pixel.



Figure 16 Pixel connections: 3D view



Figure 17 Micro bump bond pad

Figure 18 Dummy 3D Connections

# 4.2 ASIC Alignment markers

The four corners of the top and bottom ASIC contains alignment markers which are used for 3D bonding.







Figure 19 Chip Marker (Bottom ASIC)

Figure 20 Chip Marker (Top ASIC)

Figure 21 Chip markers when aligned

# 5. Assembly and testing Information

# **5.1 ASIC Pin out Layout**



(Ø.9,-Ø.45) gated\_diode

Figure 22 MAMBO3 ASIC – Pinout

# 5.2 ASIC Pin out table

| PIN | Co-      | MAMBO3              | Туре            | Description         | РСВ             |
|-----|----------|---------------------|-----------------|---------------------|-----------------|
|     | ordinate |                     | ~ 1             | -                   | CONNECTOR       |
| 1   | 0,4.65   | vdda! (1.8V)        | Supply          | Power Supply        | AA1/BA1         |
|     |          |                     |                 | (1.8V): Analogue    |                 |
| 2   | 0,4.5    | vdda! (1.8V)        | Supply          | Power Supply        | AA1/BA1         |
|     |          |                     | ~ .             | (1.8V): Analogue    |                 |
| 3   | 0,4.35   | vdda! (1.8V)        | Supply          | Power Supply        | AA1/BA1         |
| 4   | 0.4.2    |                     | Committee 1     | (1.8V): Analogue    |                 |
| 4   | 0,4.2    | vaa! (1.8v)         | Suppry          | Power Supply        | AAI/BAI         |
| 5   | 0.4.05   | Cndal (0 0V)        | Ground          | Ground (OV) :       | A A 2/B A 2     |
| 5   | 0,4.05   |                     | Oround          | Analogue            | AA2/DA2         |
| 6   | 039      | Gnda! (0.0V)        | Ground          | Ground (0V) ·       | AA2/BA2         |
| Ū   | 0,5.7    |                     | Ground          | Analogue            |                 |
| 7   | 0.3.75   | Gnda! (0.0V)        | Ground          | Ground (0V) :       | AA2/BA2         |
|     |          |                     |                 | Analogue            |                 |
| 8   | 0,3.6    | testOutputA         | Analogue Output | Buffer output of    | To oscilloscope |
|     |          |                     |                 | pixel on test       |                 |
| 9   | 0,3.45   | In_test_1           | Analogue Input  | Test Input level    | Onboard         |
| 10  | 0,3.3    | In_test_2           | Analogue Input  | Test Input level    | Onboard         |
| 11  | 0,3.15   | Ib1b                | Off-chip Bias   | Buffer bias current | Onboard         |
| 12  | 0,3.0    | Br_down             | Off-chip Bias   | Shaper bias         | AA10            |
|     |          |                     |                 | voltage             |                 |
| 13  | 0,2.85   | Br_up               | Off-chip Bias   | Shaper bias         | AA11            |
|     |          |                     |                 | current             |                 |
| 14  | 0,2.7    | I_leak              | Off-chip Bias   | Leakage             | Onboard         |
|     |          |                     |                 | compensation bias   |                 |
| 15  | 0.2.55   | Cnd dia! (0.0V)     | Ground          | Cround (OV) :       | A A 12/D A 12   |
| 15  | 0,2.33   | Gliu_uig: (0.0 v)   | Oloulia         | Digital             | AAIJ/DAIJ       |
| 16  | 024      | Gnd dig! (0.0V)     | Ground          | Ground (0V) ·       | AA13/BA13       |
| 10  | 0,2.4    | Und_ung. (0.07)     | Ground          | Digital             |                 |
| 17  | 0.2.25   | Vdd config!         | Supply          | Power Supply        | AA14/BA14       |
|     | - ,      | $(1.8\overline{V})$ |                 | (1.8V): Digital     |                 |
| 18  | 0,2.1    | Vdd_config!         | Supply          | Power Supply        | AA14/BA14       |
|     |          | ( <b>1.8V</b> )     |                 | (1.8V): Digital     |                 |
| 19  | 0,1.95   | Vdd_cou! (1.0V)     | Supply          | Power Supply        | AA15/BA15       |
|     |          |                     |                 | (1.0V): Digital     |                 |
| 20  | 0,1.8    | Vdd_cou! (1.0V)     | Supply          | Power Supply        | AA15/BA15       |
| 21  | 0167     |                     | Care a las      | (1.0V): Digital     |                 |
| 21  | 0,1.65   | vdd_comp! (1.8V)    | Supply          | Power Supply        | AA10/BA10       |
| 22  | 015      | Vdd comm! (1957)    | Supply          | (1.8 v): Analogue   | A A 16/D A 16   |
|     | 0,1.3    |                     | Suppry          | (1.8V): Analogue    | AA10/DA10       |
| 23  | 0135     | ih1a                | Off-chin Bias   | Preamp bias         | AA17            |
|     | 0,1.30   | -~                  | on one blub     | current             |                 |

| 24 | 0,1.2     | Ib1s                    | Off-chip Bias      | Shaper bias       | AA18          |
|----|-----------|-------------------------|--------------------|-------------------|---------------|
|    |           |                         |                    | current           |               |
| 25 | 0,1.05    | Vdda!                   | Supply             | Power Supply      | AA1/BA1       |
|    |           |                         |                    | (1.8V): Analogue  |               |
| 26 | 0,0.9     | Gnda!                   | Ground             | Ground (0V) :     | AA2/BA2       |
|    |           |                         |                    | Analogue          |               |
| 27 | 0,0.75    | 1b2s                    | Off-chip Bias      | Shaper bias       | AA21          |
|    |           |                         |                    | current           |               |
| 28 | 0,0.6     | Ib1c                    | Off-chip Bias      | comparator bias   | AA22          |
| 20 | 0.0.45    |                         |                    | current           |               |
| 29 | 0,0.45    | 1b2c                    | Off-chip Bias      | comparator bias   | AA23          |
| 20 | 0.0.2     | 1111                    |                    | current           | 4.4.10        |
| 30 | 0,0.3     |                         | Off-chip Blas      | DAC bias voltage  | AA12          |
| 31 | 0,0.15    | lb2d                    | Off-chip Bias      | DAC bias current  | AA10 (Jumper) |
| 32 | 0,0       | Baseline                | Off-chip tune able | Baseline restorer | BA24          |
|    |           |                         | voltage            | bias voltage      |               |
| 33 | 4.86,0    | In_ref_L                | Off-chip tune able | Comparator lower  | BA23          |
|    |           |                         | voltage            | threshold voltage |               |
| 34 | 4.86,0.15 | In_ref_H                | Off-chip tune able | Comparator upper  | BA22          |
| 25 | 10602     |                         | voltage            | threshold voltage | D 4 20        |
| 35 | 4.86,0.3  | PPLUS                   | Variable           | MAMBO3 bottom     | BA38          |
|    |           |                         |                    | chip –guard ring  |               |
| 26 | 4.96.0.45 |                         | X7 ' 11            | contact           | D 4 01        |
| 36 | 4.86,0.45 | NPLUS                   | Variable           | MAMBO3 bottom     | BA21          |
|    |           |                         |                    | chip –guard ring  |               |
| 27 | 19606     | Cridal (0.0V)           | Ground             | Contact           |               |
| 57 | 4.80,0.0  | Giua: $(0.0 \text{ v})$ | Giouna             | $\Delta naloque$  | AA2/DA2       |
| 38 | 4 86 0 75 | Cnda! (0 0V)            | Ground             | Ground (OV) :     | A A 2/B A 2   |
| 50 | 4.00,0.75 |                         | Oround             | Analogue          | AA2/DA2       |
| 39 | 4 86 0 9  | vdda! (1 8V)            | Supply             | Power Supply      | AA1/BA1       |
| 57 | 1.00,0.9  | vuuu. (1.0 v)           | Suppry             | (1 8V). Analogue  |               |
| 40 | 4.86.1.05 | vdda! (1.8V)            | Supply             | Power Supply      | AA1/BA1       |
|    |           | (10))                   | ~ opp-j            | (1.8V): Analogue  |               |
| 41 | 4.86.1.20 | SHOB                    | Digital Output     | Counter/SR        | BA20          |
|    | 7         |                         | <b>0</b>           | Output            |               |
| 42 | 4.86,1.35 | SHO                     | Digital Output     | Counter/SR        | BA19          |
|    |           |                         | <b>U</b> 1         | Output            |               |
| 43 | 4.86,1.5  | testOutputD             | Digital Output     | Test output       | AA7           |
| 44 | 4.86,1.65 | Vdd_comp! (1.8V)        | Supply             | Power Supply      | AA16/BA16     |
|    |           |                         |                    | (1.8V): Analogue  |               |
| 45 | 4.86,1.8  | Vdd_cou! (1.0V)         | Supply             | Power Supply      | AA15/BA15     |
|    |           |                         |                    | (1.0V): Digital   |               |
| 46 | 4.86,1.95 | Vdd_cou! (1.0V)         | Supply             | Power Supply      | AA15/BA15     |
|    |           |                         |                    | (1.0V): Digital   |               |
| 47 | 4.86,2.1  | Vdd_config!             | Supply             | Power Supply      | AA14/BA14     |
|    |           | (1.8V)                  |                    | (1.8V): Digital   |               |
| 48 | 4.86,2.25 | Gnd_dig! (0.0V)         | Ground             | Ground (0V) :     | AA13/BA13     |
|    |           |                         |                    | Digital           |               |

| 49 | 4.86,2.4  | SerialIn        | Digital Input | Configuration        | BA29         |
|----|-----------|-----------------|---------------|----------------------|--------------|
|    |           |                 |               | register Input       |              |
| 50 | 4.86,2.55 | SerialOut       | Digital Input | Configuration        | AA8          |
|    |           |                 |               | register Output      |              |
| 51 | 4.86,2.7  | Vdd_esd! (1.8V) | Supply        | Power Supply         | BA12         |
|    |           |                 |               | (1.8V): ESD          |              |
|    |           |                 |               | protection           |              |
| 52 | 4.86,2.85 | Gnd_esd! (0.0V) | Ground        | Ground (0V) :        | BA11         |
|    |           |                 |               | ESD protection       |              |
| 53 | 4.86,3    | Load            | Digital Input | Configuration        | BA32         |
|    |           |                 |               | register Load        |              |
| 54 | 4.86,3.15 | SerialClk       | Digital Input | Configuration        | BA31         |
|    |           |                 |               | register clock       |              |
| 55 | 4.86,3.3  | ReadB           | Digital Input | Shift register       | BA8          |
|    |           |                 |               | mode (inverse)       |              |
| 56 | 4.86,3.45 | Read            | Digital Input | Shift register       | BA7          |
|    |           |                 |               | mode                 |              |
| 57 | 4.86,3.6  | CLK_READB       | Digital Input | Shift register clock | BA6          |
|    |           |                 |               | (inverse)            |              |
| 58 | 4.86,3.75 | CLK_READ        | Digital Input | Shift register clock | BA5          |
| 59 | 4.86,3.9  | Strobe2b        | Digital Input | Enable In_test_2     | AA31         |
|    |           |                 |               | (inverse)            |              |
| 60 | 4.86,4.05 | Strobe2         | Digital Input | Enable In_test_2     | AA33         |
| 61 | 4.86,4.2  | Strobe1b        | Digital Input | Enable In_test_1     | BA10         |
|    |           |                 |               | (inverse)            |              |
| 62 | 4.86,4.35 | Strobe1         | Digital Input | Enable In_test_1     | BA9          |
| 63 | 4.86,4.5  | Gnda! (0.0V)    | Ground        | Ground (0V) :        | AA2/BA2      |
|    |           |                 |               | Analogue             |              |
| 64 | 4.86,4.65 | vdda! (1.8V)    | Supply        | Power Supply         | AA1/BA1      |
|    |           |                 |               | (1.8V): Analogue     |              |
| 65 | 0.9,-0.45 | Gated_diode     | Variable      | MAMBO3 bottom        | Onboard      |
|    |           |                 |               | chip -diode          |              |
|    |           |                 |               | control              |              |
| 66 | 0.9,5.10  | Shield          | Ground        | MAMBO3 bottom        | Onboard (Va) |
|    |           |                 |               | chip -diode shield   |              |

NOTE: Documents for further reference:

PCB schematics:

MAMBO2\_daughter board
MAMBO3\_piggy board
MAMBO2\_FPGA board

|        | Current per pixel | Current per column |
|--------|-------------------|--------------------|
| I_leak | 50p               | 2.2n               |
| Ib1a   | 1u                | 44u                |
| Ib1b   | 10u               | 440u               |
| Ib1c   | 75n               | 3.3u               |
| Ib2c   | 200n              | 8.8u               |
| Ib2d   | 2n                | 88n                |
| Ib1s   | 343n              | 15u                |
| Ib2s   | 10n               | 440n               |
| Br up  | 2n                | 88n                |

# 6. Current settings for test

# 7. Operation

- a. All bias currents and voltages need to setup externally and fine tuned.
- b. Threshold voltages VthL and VthH determine the sensitive energy range of the ASIC.
- c. 1 pixel can be selected to verify operation while all other pixels are disabled by loading the following test word.

#### Test word: Analogue test.

The analogue test output needs to be monitored on the scope to verify correction analogue behavior.

Similarly the output testOutputD can be monitored to verify operation of the counter/ shift register using the following test word.

#### Test word: Digital test.

All other test functions are outlined in the configuration register test setup.

- d. The DACs need to be trimmed individually per pixel.
- e. The ASIC is now ready to be used for normal operation.

# 8. Future plans

With the inclusion of nested wells in the OKI 0.2µm SOI process in the future, a successive submission of MAMBO IV is planned to integrate back the detector and electronics in a single tier. The nested well structure effectively screens capacitive coupling between the diode and the electronics and will also create a homogenous electric field through the entire detector volume. This will enable us to once again exploit the advantages of the SOI process with a monolithic combination of the detector and electronics, having eliminated its negative impacts.



Figure 23 MAMBO IV: Conceptual view