

Omega Hyperon Decays in the HyperCP Experiment and Measurement of the Branching Ratio for

$$\Omega^-
ightarrow \Xi^{*0}_{1530} \pi^-$$

Oleg Kamaev Illinois Institute of Technology for the HyperCP Collaboration

Joint Meeting of Pacific Region Particle Physics Communities October 29 – November 03, Honolulu, HI

HyperCP (FNAL E871) Collaboration

A. Chan, Y.C. Chen, C. Ho, P.K. Teng

Academia Sinica, Taiwan

W.S. Choong, Y. Fu, G. Gidal, P. Gu, T. Jones, K.B. Luk, B. Turko, P. Zyla

University of California at Berkeley and Lawrence Berkeley National Laboratory

C. James, J. Volk

Fermilab

J. Felix

University of Guanajuato, Mexico

R. Burnstein, A. Chakravorty, D. Kaplan, L. Lederman, W. Luebke, D. Rajaram,

H. Rubin, N. Solomey, Y. Torun, C. White, S. White

Illinois Institute of Technology

N. Leros, J. P. Perroud

Universite de Lausanne

R.H. Gustafson, M. Longo, F. Lopez, H.K. Park

University of Michigan

C. M. Jenkins, K. Clark

University of South Alabama

C. Dukes, C. Durandet, T. Holmstrom, M. Huang, L.C. Lu, K. Nelson

University of Virginia

The HyperCP Experiment

Primary Goal:

OF TECHNOLOG

ILLINOIS INSTITUTE

Search for CP violation

in hyperon decays,

especially $\Xi \rightarrow \Lambda \pi \rightarrow p \pi \pi$.

Spectrometer featured:

- High-rate detectors & DAQ (100k evts/s);
- Alternating "+" & "–" running (with reversed B fields) to minimize systematics;
- Simple, low-bias triggers based on hodoscope coincidences.

10/30/2006

In 12 months of data taking in 1997–99, HyperCP recorded one of the largest data samples ever by a particle-physics experiment:

231 billion events, 29,401 tapes, and 119.5 TB of data

ILLINOIS INSTITUTE

In 12 months of data taking in 1997–99, HyperCP recorded one of the largest data samples ever by a particle-physics experiment:

231 billion events, 29,401 tapes, and 119.5 TB of data

Reconstructed event samples.

	Reconstructed Events (10^6)								
	Polarity:	_	+	Total	_				
<	$\Xi\to\Lambda p\to p\pi\pi$	2032	458	2490					
	$\Omega \to \Lambda K \to pK\pi$	14	5	19	>				
	$K \to \pi\pi\pi$	164	391	555					
	$K_S \to \pi^+ \pi^-$	693	2025	2718					

Large Ω sample \Rightarrow precise α_{Ω} and $\overline{\alpha}_{\Omega}$

measurements, searches for P and CP violations

10/30/2006

• $\alpha_{\Omega} = [2.07 \pm 0.51(stat) \pm 0.81(syst)] \times 10^{-2}$ based on $0.96 \times 10^6 \ \Omega^- \rightarrow \Lambda K^- \rightarrow p \pi^- K^-$ Chen et al., PRD 71, 051102 (2005) • $\alpha_{\Omega} = [1.78 \pm 0.19(stat) \pm 0.16(syst)] \times 10^{-2}$ based on $4.5 \times 10^6 \ \Omega^- \rightarrow \Lambda K^- \rightarrow p \pi^- K^-$ (different data sample) Lu et al., PLB 617, 11 (2005) • $\overline{\alpha}_{\Omega} = [-1.81 \pm 0.28(stat) \pm 0.26(syst)] \times 10^{-2}$ based on $1.89 \times 10^6 \ \overline{\Omega}^+ \rightarrow \overline{\Lambda} K^+ \rightarrow \overline{p} \pi^+ K^+$ Lu et al., PRL 96, 242001 (2006)

ILLINOIS INSTITUTE

In 12 months of data taking in 1997–99, HyperCP recorded one of the largest data samples ever by a particle-physics experiment:

231 billion events, 29,401 tapes, and 119.5 TB of data

Reconstructed event samples.

	Reconstructed Events (10^6)								
	Polarity:	_	+	Total					
	$\Xi\to\Lambda p\to p\pi\pi$	2032	458	2490					
	$\Omega \to \Lambda K \to pK\pi$	14	5	19	>				
	$K \to \pi\pi\pi$	164	391	555					
	$K_S \to \pi^+ \pi^-$	693	2025	2718					

α_Ω = [2.07±0.51(stat)±0.81(syst)]×10⁻² based on 0.96×10⁶ Ω⁻ → ΛK⁻ → pπ⁻K⁻ Chen et al., PRD 71, 051102 (2005)
α_Ω = [1.78±0.19(stat)±0.16(syst)]×10⁻² based on 4.5×10⁶ Ω⁻ → ΛK⁻ → pπ⁻K⁻ (different data sample) Lu et al., PLB 617, 11 (2005)
α_Ω = [-1.81±0.28(stat)±0.26(syst)]×10⁻²

• $\overline{\alpha}_{\Omega} = \left[-1.81 \pm 0.28(stat) \pm 0.26(syst)\right] \times 10^{-2}$ based on $1.89 \times 10^6 \ \overline{\Omega}^+ \rightarrow \overline{\Lambda}K^+ \rightarrow \overline{p}\pi^+K^+$ Lu et al., PRL 96, 242001 (2006)

No evidence of CP violation!

$$A_{\Omega} \equiv \frac{\alpha_{\Omega} + \alpha_{\Omega}}{\alpha_{\Omega} - \overline{\alpha}_{\Omega}} = \left[-1.6 \pm 9.2(stat) \pm 8.6(syst) \pm 2.2\right] \times 10^{-2}$$

10/30/2006

In 12 months of data taking in 1997–99, HyperCP recorded one of the largest data samples ever by a particle-physics experiment:

231 billion events, 29,401 tapes, and 119.5 TB of data

Reconstructed event samples.

1	Reconstructe	-			
	Polarity:	_	+	Total	
	$\Xi \to \Lambda p \to p \pi \pi$	2032	458	2490	
<	$\Omega \to \Lambda K \to p K \pi$	14	5	19	\geq
	$K \to \pi\pi\pi$	164	391	555	Ţ
	$K_S \to \pi^+ \pi^-$	693	2025	2718	
	Large 9	Ω sam	nple =	⇒ Sea	arches for
			rare l	nyperc	on decays
	10/30/2006				Oleg Kamaev

Searches and studies for: • $\Delta S=2: \Omega^- \to \Lambda \pi^- \to p\pi^-\pi^-$ • $\Omega^- \rightarrow \Xi_{1530}^{*0} \pi^-$ (this talk!) • $\Omega^- \rightarrow \Xi^- \pi^+ \pi^-$ • FCNC decays: $\Omega^- \rightarrow \Xi^- \mu^+ \mu^ \Omega^- \rightarrow \Xi^- e^+ e^-$ As well as antiparticle modes.

C.G. White et al. (HyperCP collaboration)

Phys. Rev. Lett. 94, 101804 (2005)

A sensitive search for the rare decays $\Omega^- \to \Lambda \pi^-$ and $\Xi^0 \to p \pi^-$ has been performed using data from the 1997 run of the HyperCP (Fermilab E871) experiment. Limits on other such processes do not exclude the possibility of observable rates for $|\Delta S| = 2$ nonleptonic hyperon decays, provided the decays occur through parity-odd operators. We obtain the branching-fraction limits $\mathcal{B}(\Omega^- \to \Lambda \pi^-) < 2.9 \times 10^{-6}$ and $\mathcal{B}(\Xi^0 \to p \pi^-) < 8.2 \times 10^{-6}$, both at 90% confidence level.

Oleg Kamaev

- Allowed in SM through second-order weak interactions, branching ratio ~ 10⁻¹⁷;
- Any observation at current levels of sensitivity would suggest new physics;
- Analyzed data set containing

~ $3 \cdot 10^6 \ \Omega^- \rightarrow \Lambda K^- \rightarrow p \pi^- K^-$ decays;

• No events observed, upper limits established.

10/30/2006

Theoretical Predictions:

ILLINOIS INSTITU

- Finjord and Gaillard, PRD 22, 778 (1980): $BR(\Omega^- \to \Xi_{1530}^{*0}\pi^-) = \frac{3}{1070} \approx 28 \times 10^{-4}$
- Duplancic et al., PRD 70, 077506 (2004): $BR(\Omega^- \to \Xi_{1530}^{*0} \pi^-) \simeq 8.58 \times 10^{-4}$ (Skyrme)
- Both models assume a cascade decay $\Omega^- \to \Xi_{1530}^{*0} \pi^- \to \Xi^- \pi^+ \pi^$ and hence $BR(\Omega^- \to \Xi^- \pi^+ \pi^-) = \frac{2}{3} \cdot BR(\Omega^- \to \Xi_{1530}^{*0} \pi^-)$

Experimental Results:

• The current PDG branching ratios are: BR($\Omega^{-} \rightarrow \Xi^{-}\pi^{+}\pi^{-}$) = $(4.3^{+3.4}_{-1.3}) \times 10^{-4}$ BR($\Omega^{-} \rightarrow \Xi^{*0}_{1530}\pi^{-}$) = $(6.4^{+5.1}_{-2.0}) \times 10^{-4}$

"The $\Omega^- \to \Xi^*(1530)\pi^-$ decays are expected to dominate the $\Xi^-\pi^+\pi^-$ decay modes.

Assuming that the 4 events are $\Omega^- \to \Xi_{1530}^{*0} \pi^$ events, we deduce using a branching ratio of 2/3 for $\Xi_{1530}^{*0} \to \Xi^- \pi^+$:

 $\Gamma(\Omega^{-} \to \Xi^{*0}_{1530}\pi^{-}) / \Gamma(\Omega^{-} \to all) = (6.4^{+5.1}_{-2.0}) \times 10^{-4}$ "

Both measurements were done by M. Bourquin *et al.*, Nucl. Phys. B 241, 1 (1984) and are based on the same four observed events.

• N. Solomey (HyperCP, 137 events): $BR(\Omega^- \rightarrow \Xi^- \pi^+ \pi^-) = (3.56 \pm 0.33(stat)) \times 10^{-4}$ Without numerical estimation of the resonance decay channel contribution. 10/30/2006 Oleg Kamaev

Signal Modes:

OF TECHNOLOG

ILLINOIS INSTITUTE

- $\Omega^- \to \Xi_{1530}^{*0} \pi^-$ 5 tracks, includes subsequent decays $\Xi_{1530}^{*0} \to \Xi^- \pi^+, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-$
- $\Omega^- \to \Xi^- \pi^+ \pi^-$ 5 tracks, includes subsequent decays $\Xi^- \to \Lambda \pi^-$, $\Lambda \to p \pi^-$ Normalizing Mode:

 $\Omega^- \to \Xi_{1530}^{*0} \pi^-$ decay, with subsequent $\Xi_{1530}^{*0} \to \Xi^- \pi^+$:

• both decays were generated with uniform phase space;

• Ξ_{1530}^{*0} mass was generated with Breit-Wigner distribution p(x)

$$m) = A \frac{\frac{\Gamma_{2}}{(m - m_{0})^{2} + (\Gamma_{2})^{2}},$$

where $m_0 = 1.5318$ GeV, $\Gamma = 9.1$ MeV (PDG values).

 $\Omega^- \rightarrow \Xi^- \pi^+ \pi^-$ decay:

- was generated uniformly in phase space;
- subsequent decays $\Xi^- \rightarrow \Lambda \pi^-$, $\Lambda \rightarrow p\pi^$ were generated with PDG decay-asymmetry parameters.

 $\Omega^- \to \Lambda K^-$ decay, as well as subsequent decays $K^- \to \pi^+ \pi^- \pi^-$, $\Lambda \to p\pi^-$, were generated with PDG decay-asymmetry parameters.

10/30/2006

Event Reconstruction:

ILLINOIS INSTITUTE

- Track with the highest momentum is assigned to be proton;
- Other tracks' tagging based on the track combination that gives reconstructed invariant mass closest to the PDG value.

$\Omega^- \to \Xi^{*0}_{1530} \pi^-$ and $\Omega^- \to \Xi^- \pi^+ \pi^-$ Selection Criteria:

- 3 negative and 2 positive tracks;
- Reconstructed invariant masses of particles are within 3σ of corresponding PDG values;
- Total momentum between 135 and 220 GeV/c;
- All decay vertices inside the decay volume and vertex topology consistent with the decay;
- Tracks form good vertices;
- Reasonable $\chi^2/ndof$ from fitting decay topology to upstream segments;
- Reconstructed Ω^- track within the aperture of the collimator;
- Reconstructed Ω^- track originates from the target;
- No muon hodoscope hits.

Selection Criteria for the normalizing mode $\Omega^- \to \Lambda K^-$ are similiar.

10/30/2006

Normalizing Mode Data and MC

MC was tuned to get a reasonable match with the data.

Selected variables for Ω . Dots with error bars – data, solid line – MC.

Signal Mode Data and MC

MC was tuned to get a reasonable match with the data.

Selected variables for Ω . Dots with error bars – data, solid line – MC.

10/30/2006

How to calculate Branching Ratios?

$$BR(\Omega^{-} \to \Xi_{1530}^{*0} \pi^{-}) = \frac{N_{\Omega^{-} \to \Xi_{1530}^{*0} \pi^{-}}}{N_{\Omega^{-} \to \Lambda K^{-}}} \cdot \frac{A_{\Omega^{-} \to \Lambda K^{-}}}{A_{\Omega^{-} \to \Xi_{1530}^{*0} \pi^{-}}} \cdot \frac{BR_{\Omega^{-} \to \Lambda K^{-}} \cdot BR_{K^{-} \to \pi^{+} \pi^{-} \pi^{-}}}{BR_{\Xi_{1530}^{*0} \to \Xi^{-} \pi^{+}} \cdot BR_{\Xi^{-} \to \Lambda \pi^{-}}}$$
$$BR(\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}) = \frac{N_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}}}{N_{\Omega^{-} \to \Lambda K^{-}}} \cdot \frac{A_{\Omega^{-} \to \Lambda K^{-}}}{A_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}}} \cdot \frac{BR_{\Omega^{-} \to \Lambda K^{-}} \cdot BR_{K^{-} \to \pi^{+} \pi^{-} \pi^{-}}}{BR_{\Xi^{-} \to \Lambda \pi^{-}}}$$
$$N_{\Omega^{-} \to \Xi^{+} \pi^{-}} = p_{res} \cdot N_{signal}$$
$$N_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}} = p_{3b} \cdot N_{signal}$$

Acceptances: $\begin{vmatrix} A_{\Omega^{-} \to \Xi_{1530}^{*0} \pi^{-}} = 1.20 \times 10^{-2} \\ A_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}} = 5.16 \times 10^{-3} \\ A_{\Omega^{-} \to \Lambda K^{-}} = 2.80 \times 10^{-4} \end{vmatrix}$

Branching ratio values:

$$BR_{\Omega^{-} \to \Lambda K^{-}} = 6.78 \times 10^{-1}$$

$$BR_{\Xi^{-} \to \Lambda \pi^{-}} = 9.99 \times 10^{-1}$$

$$BR_{\Xi_{1530}^{*0} \to \Xi^{-} \pi^{+}} = \frac{2}{3}$$

$$BR_{K^{-} \to \pi^{+} \pi^{-} \pi^{-}} = 5.59 \times 10^{-2}$$

ILLINOIS INSTITUTE

OF TECHNOLOGY

How to calculate Branching Ratios?

$$BR(\Omega^{-} \to \Xi_{1530}^{*0} \pi^{-}) = \frac{N_{\Omega^{-} \to \Xi_{1530}^{*0} \pi^{-}}}{N_{\Omega^{-} \to \Lambda K^{-}}} \cdot \frac{A_{\Omega^{-} \to \Lambda K^{-}}}{A_{\Omega^{-} \to \Xi_{1530}^{*0} \pi^{-}}} \cdot \frac{BR_{\Omega^{-} \to \Lambda K^{-}} \cdot BR_{K^{-} \to \pi^{+} \pi^{-} \pi^{-}}}{BR_{\Xi_{1530}^{*0} \to \Xi^{-} \pi^{+}} \cdot BR_{\Xi^{-} \to \Lambda \pi^{-}}}$$
$$BR(\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}) = \frac{N_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}}}{N_{\Omega^{-} \to \Lambda K^{-}}} \cdot \frac{A_{\Omega^{-} \to \Lambda K^{-}}}{A_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}}} \cdot \frac{BR_{\Omega^{-} \to \Lambda K^{-}} \cdot BR_{K^{-} \to \pi^{+} \pi^{-} \pi^{-}}}{BR_{\Xi^{-} \to \Lambda \pi^{-}}}$$
$$N_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}} = p_{res} \cdot N_{signal}$$
$$N_{\Omega^{-} \to \Xi^{-} \pi^{+} \pi^{-}} = p_{3b} \cdot N_{signal}$$

Proportionality coefficients (p_{res} and p_{3b}) can be found by fitting data to the combination of resonance and 3-body MCs in:

• Dalitz plot (2D histogram)

or using the best variable to distinguish between resonance and 3-body mode

• Xi(1530) invariant mass distribution (1D histogram).

ILLINOIS INSTITUT

Which fitting method to use?

Want to perform precise measurements, which includes parameter determination from fitting, but we have low statistics in both, normalizing and signal, modes. Moreover, we want to do Dalitz plot analysis (two-dimensional) with only 58 signal events!

Use Unbinned Generalized LogLikelihood Fitting Method:

Suppose that: $f(x; \vec{p})$ - fit function, where \vec{p} - vector of fit parameters. Integral over fit range is $N(\vec{p}) = \int_{x_1}^{x_2} f(x; \vec{p}) dx$. Likelihood is $L(\vec{p}) = \prod_{i=1}^{n} \frac{f(x_i; \vec{p})}{N(\vec{p})}$, where *n* - total # of observed events. Now we add probability for observing n events, when the number of observed events is Poisson with mean $N(\vec{p})$. Generalized Likelihood is $L(\vec{p}) = \frac{N^n(\vec{p})e^{-N(\vec{p})}}{n!} \prod_{i=1}^n \frac{f(x_i; \vec{p})}{N(\vec{p})}.$ After algebra and removing terms that don't affect location of minimum: $-\ln L(\vec{p}) = \int_{x}^{x_2} f(x; \vec{p}) dx - \sum_{i=1}^{n} \ln f(x_i; \vec{p}) - \cdots$ We minimize this in MINUIT.

(see A.G. Frodesen et al., "Probability and Statistics in Particle Physics.")

Unbinned Likelihood Fitting

Normalizing Mode Data, 311 events.

Gaussian plus constant fit (blue) to reconstructed invariant Omega mass. Histogram is for visualization only.

Unbinned Likelihood Fitting

Signal Mode Data, 81 events.

Gaussian plus constant fit (blue) to reconstructed invariant Omega mass. Histogram is for visualization only.

Fitting data to the combination of resonance and 3-body MCs to find proportionality coefficients (p_{res} and p_{3b}).

Apply Unbinned Generalized LogLikelihood Fit.

Fit function: $f(m_{\Xi^{-}\pi^{+}}; p_{res}, p_{3b}) = N_{signal} \cdot \left(p_{res} \cdot \frac{f_{res}(m_{\Xi^{-}\pi^{+}})}{N_{MC(res)}} + p_{3b} \cdot \frac{f_{3b}(m_{\Xi^{-}\pi^{+}})}{N_{MC(3b)}} \right),$

where $f_{res}(m_{\Xi^{-}\pi^{+}})$ and $f_{3b}(m_{\Xi^{-}\pi^{+}})$ are functional forms of the corresponding MCs, $N_{MC(res)}, N_{MC(3b)}$ - total number of events in MCs.

 $-\ln L(p_{res}, p_{3b}) = N_{signal} \cdot (p_{res} + p_{3b}) - \sum_{i=1}^{N_{signal}} \ln f(m_i; p_{res}, p_{3b}) - \text{function to minimize.}$

 $f_{res}(m_{\Xi^{-}\pi^{+}})$ and $f_{3b}(m_{\Xi^{-}\pi^{+}})$ can be found by smoothing histograms from MCs.

10/30/2006

Histogram Smoothing

Blue – analytical function that was found by smoothing corresponding histograms.

10/30/2006

Xi(1530): Unbinned Likelihood Fitting

ILLINOIS INSTITUTE

Dalitz plot

Big blue dots – data, 58 events; Small black dots – Monte Carlo.

Monte Carlo for $\Omega^- \rightarrow \Xi_{1530}^{*0} \pi^-$ 1.54 1.53 ρ $\pi^{+}\pi^{-}\pi^{-}$ mass (GeV/c²) 1.52 1.51 1.5 1.49 1.48 1.47 HyperCP preliminary 1.46

0.32

0.3

Monte Carlo for $\Omega^- \rightarrow \Xi^- \pi^+ \pi^-$

10/30/2006

0.28

Oleg Kamaev

Fitting data to the combination of resonance and 3-body MCs to find proportionality coefficients (p_{res} and p_{3b}).

Apply Unbinned Generalized LogLikelihood Fit. Fit function:

$$f(m_{\Xi^{-}\pi^{+}}, m_{\pi^{-}\pi^{+}}; p_{res}, p_{3b}) = N_{signal} \cdot \left(p_{res} \cdot \frac{f_{res}\left(m_{\Xi^{-}\pi^{+}}, m_{\pi^{-}\pi^{+}}\right)}{N_{MC(res)}} + p_{3b} \cdot \frac{f_{3b}\left(m_{\Xi^{-}\pi^{+}}, m_{\pi^{-}\pi^{+}}\right)}{N_{MC(3b)}} \right),$$

where $f_{res}(m_{\Xi^-\pi^+}, m_{\pi^-\pi^+})$ and $f_{3b}(m_{\Xi^-\pi^+}, m_{\pi^-\pi^+})$ are functional forms of the corresponding MCs, $N_{MC(res)}, N_{MC(3b)}$ - total number of events in MCs.

$$-\ln L(p_{res}, p_{3b}) = N_{signal} \cdot (p_{res} + p_{3b}) - \sum_{i=1}^{N_{signal}} \ln f((m_{\Xi^{-}\pi^{+}}, m_{\pi^{-}\pi^{+}})_{i}; p_{res}, p_{3b}) - --$$
 function to minimize.

 $f_{res}(m_{\Xi^{-}\pi^{+}}, m_{\pi^{-}\pi^{+}})$ and $f_{3b}(m_{\Xi^{-}\pi^{+}}, m_{\pi^{-}\pi^{+}})$ can be found by smoothing histograms from MCs.

10/30/2006

Dalitz plot: Histogram Smoothing

ILLINOIS INSTITUTE

histogram, 70 X 76 bins

3-body mode:

Resonance mode:

10/30/2006

Oleg Kamaev

MINUIT:									
FCN= 269.3999 FROM MINOS STATUS=SUCCESSFUL 56 CALLS 248 TOTAL									
EDM= 0.35E-14 STRATEGY= 2 ERROR MATRIX A	CCURATE								
EXT PARAMETER PARABOLIC MINOS ERRORS									
NO. NAME VALUE ERROR NEGATIVE POSITIVE									
1 3-body 1.07879 0.18052 -0.17278	0.18877								
2 resonance -0.07879 0.11255 -0.10658	0.11925								
ERR DEF= 0.500									
PARAMETER CORRELATION COEFFICIENTS									
NO. GLOBAL 1 2									
1 0.68952 1.000 -0.690									
2 0.68952 -0.690 1.000									
Both methods give statistically Xi(1530) fitting Dalitz plot fitting									
consistent results!	p_{3b} 1.11±0.18	1.08±0.18							
	p_{res} -0.11±0.11	-0.08±0.11							

OF TECHNOLOGY

Branching Ratio and Upper Limit Calculation OF TECHNOLOG

 $BR(\Omega^- \rightarrow \Xi^{*0}_{1530}\pi^-) = (-1.91 \pm 2.74(stat)) \times 10^{-5}$ (consistent with zero)

• Statistical errors are from # of events and fitting parameters uncertainties;

Oleg Kamaev

- Systematic errors are under study and expected to be $\sim (10-20)\%$;
- Statistical uncertainty by far dominates over systematics.

Neglecting systematics, with only statistical error, we estimate: $BR(\Omega^{-} \rightarrow \Xi_{1530}^{*0} \pi^{-}) < 3.5 \times 10^{-5}$ at 90% C.L., which is ~ 2 orders of magnitude < than prediction.

We numerically solve

where b - unknown upper limit (blue line on the right plot).

(see L. Lyons "Statistics for nuclear and particle physicists")

10/30/2006

ILLINOIS INSTITUTE

- HyperCP recorded largest hyperon samples ever taken;
- Parity violation in $\Omega^{\mp} \to \Lambda(\overline{\Lambda})K^{\mp}$ observed;
- No evidence of CP violation in $\Omega^{\mp} \to \Lambda(\overline{\Lambda}) K^{\mp}$ decays;
- $\Delta S=2$ results are consistent with theoretical predictions at current levels of sensitivity;
- First actual measurement of $BR(\Omega^- \to \Xi_{1530}^{*0} \pi^-)$ performed: \triangle 1999 data of HyperCP analyzed;
 - △ With ~14 times the number of previously observed Ω⁻ → Ξ⁻π⁺π⁻ events, we measured the contribution from the resonance decay channel Ω⁻ → Ξ^{*0}₁₅₃₀π⁻;
 - △ No resonance mode decays observed;

△ Preliminary: $BR(\Omega^- \to \Xi_{1530}^{*0} \pi^-) < 3.5 \times 10^{-5}$ at 90% C.L.

Backup Slides

Feynman Diagrams

10/30/2006

S

S

ILLINOIS INSTITUTE

Oleg Kamaev

Number of normalizing and signal events:

	fit g+p0 (large scale)		fit g+p0 (+/-3sigma window)		bkg. from+/- 25si. till +/-5si.	fit g+p1 (large scale)	
	# of events	error	# of events	error	# of events	# of events	error
normalizing	303.5	17.5	294.6	19.4	303.4		
signal	55.2	7.6	58.0	7.6	54.7	56.1	7.6

We also performed fitting in +/- 3 sigma range of the Omega mass and used "background per sigma" method to get number of normalizing and signal events. Our choice is highlighted by green.

Xi(1530): Unbinned Likelihood Fitting

llinois institute V	
OF TECHNOLOGY	

586

Contour of –lnL.

1	V-AVIS · DARAI	FTEB	$2 \cdot 1$.0801	nanca		
	0 1060	22	2.1	.esu)0*	22	- 1	I
1	0.1000	22	22	.2* 00		- -	
	0.8626E-01	2		22)))	
	0.0050E-01	2		22.	2 : 00	ი. იი	
	0.4000E-01	2		*.	22	<u></u>	
	0.2716E-01	2		*	22	33	
	0.7464E-02	-2	11111		22		
	-0.1224E-01	2	1 1	.11	-22	33	
	-0.3194E-01	22	1	11	22	2 3	_
	-0.5164E-01	2	1	*1:	1 2	22 3	
	-0.7134E-01	22	11	*	11	2	
	-0.9104E-01	3 22	1	00	11	22	
	-0.1107	33**2*	*11**	000;	**11**	**22**	
	-0.1304	33 22	11	00	11	22	
	-0.1501	4 33 2	2 11	*	1	2	
	-0.1698	44 33	22 1	.11	1	22	4
	-0.1895	544433	222	11	1 1	2	
	-0.2092	44 443	33 22	*	11111	2	
	-0.2289	444444	433-2	222			
	-0.2486	334443	34333	3 22	2		
	-0.2683	333332	23343	333 3	222		
	-0.2880	33322	22233	3333	3 2222	2	
	-0.3077	233322	00211	222	333 2	222222	
	-0.3274	100322	00001	002	223333	3	
		I		Ι		I	
	0.74	426				1.47	'9
			1.	111			
	X-AXIS	: PARAM	ETER.	1:	3-bod	łv	ONE

PARAMETER CORRELATION COEFFICIENTS								
NO.	GLOBAL	1	2					
1	0.70666	1.000	-0.707					
2	0.70666	-0.707	1.000					

Conclusion:

- 1. We have a well-defined minimum;
- 2. Parameters are negatively correlated with each other.

10/30/2006

X-AXIS: PARAMETER <u>1: 3-body</u> ONE COLUMN= 0.2945E-01 FUNCTION VALUES: F(I)= 78.01 + 0.5000 *I**2

Xi(1530): Unbinned Likelihood Fitting

86.00000 Conclusion: -lnL 85.00000 We have a well-defined 84.00000 * local minimum. Plot of -lnL as a 83.00000 function of p_{res} with But it's a stable solution! p_{3b} fixed at 82.00000 ** minimum. 81.00000 . . . 80.00000 * 79.00000 78.00000 77.00000 76.00000 75.00000 * . 74.00000 10/30/2006 res 0.3400 -.4600-.2600-.6000E-010.1400 ONE COLUMN=0.2000000E-01

Dalitz plot: Unbinned Likelihood Fitting

Contour of –lnL.

	1			
Y-AXIS: PARAN	IETER	2: r	esonan	ice
0.1365	22	22	2*	33 4
0.1169	2		222	33
0.9736E-01	2		*22	33
0.7779E-01	2		* 22	33
0.5822E-01	2		* 22	33
0.3864E-01	2	1111	* 2	2 33
0.1907E-01	2	11 1	11	22 33
-0.5021E-03	-22	-1	-11	-223
-0.2008E-01	2	1	*111	22
-0.3965E-01	22	11	* 1	22
-0.5922E-01	32	1 (00 11	. 22
-0.7879E-01	33*22	**11**(000**1	1***2**
-0.9837E-01	32	2 11	00	11 22
-0.1179	33	22 11	*	1 22
-0.1375	4 333	22 1	11	1 2
-0.1571	444 3	3 22	11	1 2
-0.1767	5544	33 222	*1111	.11
-0.1962	14544	4333 2	22	
-0.2158	0004	44 33	22	
-0.2354	00000	044433	3*2222	2
-0.2550	00	000244	333 2	22
-0.2745		0004	44333	2222222
-0.2941		00	000333	333
	I		I	I
0.71	178			1.440

Conclusion:

- We have a well-defined 1. minimum;
- Parameters are negatively 2. correlated with each other.

10/30/2006

X-AXIS: PARAMETER 1: 3-body ONE COLUMN= 0.2888E-01 FUNCTION VALUES: F(I)= 269.4 + 0.5000 *I**2

1.079

Dalitz plot: Unbinned Likelihood Fitting

	OSCAN OF PARA	AMETER N	10. 2, re	sonance			Plot of -lnL as a
-lnL	282.0000			*	· · · · · · · · · · · · · · · · · · ·		function of p _{res} with
	278.0000						. p _{3b} fixed at
					•		minimum.
	274.0000			**	•	***	
	070 0000			*	•	****	
	270.0000		*	****	· ****	**	•
	266 0000		• • • • • • • • • • • •	····***	*&****		•
	200.0000				•		
	262,0000		*		•		•
			* *				Conclusion:
	258.0000		*				•
			*				. We have a well-defined
	254.0000		*				local minimum
					•		. local minimum.
	250.0000		*		•		But it's a stable solution!
	040 0000				•		
	246.0000		*		•		•
	242 0000		**		•		
	242.0000		*				
	238.0000		· 		• • • • • • • • • • • • •		
10/20/2025		/	/	/	/	/	n
10/30/2006		5200	3200	1200	0.8000E-(010.2800	Pres
			ONE C	OLUMN=0.20	00000E-01	Overprint	character is &

Pi(+)Pi(-): Unbinned Likelihood Fitting

Signal Mode Data (dots with error bars), 58 events.

Red – resonance mode MC; Green – 3-body uniform mode MC;

Histograms are for visualization purposes only.

Blue – MINUIT fit with negative and positive boundaries (dashed)

ILLINOIS INSTITUTE

OF TECHNOLOG

Xi(1530): different region fitting

Xi(1530) mass range	original	1.48-1.535	1.49-1.535	1.495-1.54	1.485-1.53
# signal events	58	58	58	57	55
color code	blue	light blue	red	green	purple
fit. par., 3-body	1.11074	1.11837	1.20055	1.29634	1.11464
fit. par., 3-body error	0.18408	0.18572	0.19638	0.21123	0.20572
fit. par., res.	-0.11074	-0.10811	-0.14275	-0.18110	0.04466
fit. par., res. error	0.11326	0.11516	0.11475	0.11525	0.19980

Dots with error bars – signal data, 58 events;

Solid line – resonance mode MC;

Dashed line – 3-body MC;

Histograms are for visualization only.

Color lines are explained in the table above.

Conclusion: Our fitting parameters are stable even if we change fitting region, but do not throw away events.

10/30/2006

Oleg Ka