HyperCP at Fermilab-A Status Report

The primary purpose of the Hyper $C P$ experiment at Fermilab is to test $C P$ in hyperon decays by comparing the alpha parameters for Ξ^{-} and $\bar{\Xi}^{+}$decays in the decay sequence: $\Xi^{-} \rightarrow \pi+\Lambda^{0}, \quad \Lambda^{0} \rightarrow \pi^{-}+\mathrm{p}$.

In addition we can test $C P$ in charged kaon decays by comparing the slopes of the Dalitz plot for K^{+}and K^{-}decays. We are also looking at rare decay modes of charged kaons and hyperons, particularly those involving muons.

In two runs in 1997 and 1999, we collected approx. 500 million charged kaon decays, 2.5 billion Ξ^{-}and $\bar{\Xi}+$ decays, and 19 million Ω^{-}and $\bar{\Omega}^{+}$decays.

The status of these analyses will be summarized.

HyperCP (E871) Collaboration

A. Chan, Y.C. Chen, C. Ho, P.K. Teng

Academia Sinica, Taiwan
W.S. Choong, Y. Fu, G. Gidal, P. Gu, T.Jones, K.B. Luk, B. Turko, P. Zyla

Lawrence Berkeley National Laboratory and University of California

C. James, J. Volk
Fermilab

J. Felix, G. Moreno, M. Sosa

University of Guanajuato, Mexico
R. Burnstein, A. Chakravorty, D. Kaplan, W. Luebke, L. Lederman, H. Rubin, D. Rajaram, N. Solomey,
Y. Torun, C. White, S. White

Illinois Institute of Technology
N. Leros, J. P. Perroud

Universite de Lausanne
H.R. Gustafson, M. Longo, F. Lopez, H.K. Park University of Michigan
K. Clark, M. Jenkins

University of South Alabama
C. Dukes, C. Durandet, R. Godang, T. Holmstrom, M. Huang, L.C. Lu, K. Nelson University of Virginia

Hyper CP Spectrometer

Data Sample from the 1997 and 1999 Runs

	1997 Run	1999 Run
Number of Tapes	9,376	18,838
Data Volume	38 TB	71 TB

* These include 250×10^{6} polarized Ξ^{-}and 50×10^{6} polarized antiΞ^{+}taken at non-zero production angles.

Projected number of reconstructed events:

Ξ^{-}	2×10^{9}	K^{-}	0.16×10^{9}	Ω^{-}	14×10^{6}
$\bar{\Xi}^{+}$	0.5×10^{9}	K^{+}	0.39×10^{9}	Ω^{+}	4.9×10^{6}

Statistical precision expected in Ξ decay CP test: $\delta A_{\Xi \Lambda}=1.4 \times 10^{-4}$

Physics Topics

- Searching for direct CP-violation by comparing the decay process:
$-\Xi^{-} \rightarrow \Lambda \pi^{-}, \Lambda \rightarrow p \pi^{-}$with $\Xi^{+} \rightarrow \bar{\Lambda} \pi^{+}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$
$-K^{-} \rightarrow 3 \pi$ with $K^{+} \rightarrow 3 \pi$
- Flavor changing neutral currents:
$-K^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}, \Sigma^{+} \rightarrow p \mu^{+} \mu^{-}$
- Lepton number violation:

$$
-K^{ \pm} \rightarrow \pi^{\mp} \mu^{ \pm} \mu^{ \pm}, \Xi^{-} \rightarrow p \mu^{-} \mu^{-}, \Sigma^{-} \rightarrow p \mu^{-} \mu^{-}
$$

- $\Delta S=2$ Decays:

$$
-\Xi^{-} \rightarrow p \pi^{-} \pi^{-}, \Omega^{-} \rightarrow \Lambda \pi^{-}, \Omega^{-} \rightarrow p K^{-} \pi-
$$

- Hyperon decay properties and production:
$-\Xi^{-}\left(\Xi^{+}\right)$and $\Omega^{-}\left(\overline{\Omega^{+}}\right)$polarization
$-\beta$ decay parameter in $\Xi^{-}\left(\Xi^{+}\right)$decays
$-\alpha$ decay parameter in $\Omega^{-}\left(\overline{\Omega^{+}}\right)$decays
- production cross section
- CPT Test: mass and lifetime of $\Xi^{-}\left(\bar{\Xi}^{+}\right)$, $\Lambda(\bar{\Lambda})$, and $\Omega^{-}\left(\overline{\Omega^{+}}\right)$

$\underline{\text { CP Violation in } K^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}}$

\rightarrow Decay amplitudes depends only on two independent kinematical variables:

$$
\begin{aligned}
X & =\frac{s_{2}-s_{1}}{m_{\pi}^{2}} \\
Y & =\frac{s_{3}-s_{0}}{m_{\pi}^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
s_{i} & =\left(\mathbf{p}_{K}-\mathbf{p}_{i}\right)^{2}=\left(m_{K}-m_{i}\right)^{2}-2 m_{K} T_{i}, i=1,2,3 \\
s_{0} & =\frac{1}{3} \sum_{i} s_{i}=\frac{1}{3}\left(m_{K}^{2}+m_{1}^{2}+m_{2}^{2}+m_{3}^{2}\right)
\end{aligned}
$$

The differential decay rate is proportional to the invariant matrix element that can be parametrized as:

$$
\left|M^{2}\right| \propto 1+g Y+\ldots
$$

If $g_{\mathrm{K}^{-}} \neq g_{\mathrm{K}^{+}}$, then CP symmetry is broken.

CP-violating Observables

Slope asymmetry

$$
\begin{gathered}
\delta g=\frac{g-\bar{g}}{g+\bar{g}} \\
\delta g= \\
\frac{\operatorname{Im}\left[\left(a_{11}+a_{13}\right)^{*}\left(b_{11}+b_{13}\right)\right] \sin \left(\delta_{1 S}-\delta_{1 M}\right)+\operatorname{Im}\left[\left(a_{11}+a_{13}\right)^{*} b_{23}\right] \sin \left(\delta_{1 S}-\delta_{2}\right)}{\operatorname{Re}\left[\left(a_{11}+a_{13}\right)^{*}\left(b_{11}+b_{13}\right)\right] \cos \left(\delta_{1 S}-\delta_{1 M}\right)+\operatorname{Re}\left[\left(a_{11}+a_{13}\right)^{*} b_{23}\right] \cos \left(\delta_{1 S}-\delta_{2}\right)}
\end{gathered}
$$

- The dominant CP -violating effect is due to the interference between two $|\Delta I=1 / 2|$ amplitudes (a_{11} and b_{11}).
- No cancellation between gluonic and electroweak penguin diagrams at large top mass.

Theoretical Predictions

	$\|\delta g\|$
H.-Y. Cheng (1991)	$<1 \times 10^{-5}$
D'Ambrosio et al. (1991)	$\leq 1 \times 10^{-5}$
Isidori et al. (1992)	$\sim 1 \times 10^{-6}$
E.P. Shabalin (1993)	$\leq(5 \pm 2) \times 10^{-5}\|\sin \delta\|$
A.A. Bel'kov et al. (1993)	$\sim 0.5 \times\left\|\epsilon^{\prime} / \epsilon\right\|$
D'Ambrosio et al. (1998)	$\sim 2 \times 10^{-6}$
E.P. Shabalin (1998)	$\sim 2 \times 10^{-4}$

Summary of Systematic Errors

Systematic Source	$\frac{\Delta g}{2 g P D G}$ Error (units of 10^{-3})	Comment
Secondary Beam	1.6	Could be corrected
Cal Fiducial	0.5	
Interaction	0.2	
Hodo Eff.	1.3	Could be corrected
Wire Eff.	0.7	Could be corrected
Targeting	0.5 ± 1.0	
Magnetic Field	1.7 ± 1.0	Earth's field could be corrected
MC statistics	1.9	Need to generate MORE MC
Total error	3.7	

Note:

1. Some of these numbers could change when more MC events are analyzed. Numbers are dominated by MC statistics. It is not clear whether correction is needed.
2. Would require detailed MC simulation and more MC events. Much time and effort need to be invested.

$K \rightarrow 3 \pi$ CP Test

Preliminary Study Based on $\approx 54 \times 10^{6} K^{ \pm}$Events (10% of total sample)

NONLEPTONIC HYPERON DECAYS

- In the $\Delta \mathbf{S}=\mathbf{1}$ decay of spin $-\frac{1}{2}$ strange baryon, angular momentum conservation allows only two final states for the spin- $-\frac{1}{2}$ baryon and pion

Parity violating S-wave
 Parity conserving P-wave

- Decay parameters

$$
\begin{gathered}
\alpha=\frac{2 \operatorname{Re}\left(S^{*} P\right)}{|S|^{2}+|P|^{2}} \quad \beta=\frac{2 \operatorname{Im}\left(S^{*} P\right)}{|S|^{2}+|P|^{2}} \quad \gamma=\frac{|S|^{2}-|P|^{2}}{|S|^{2}+|P|^{2}} \\
\alpha^{2}+\beta^{2}+\gamma^{2}=1
\end{gathered}
$$

- The angular distribution of the final state baryon in the rest frame of the parent baryon with polarization \mathcal{P} depends on α

$$
\frac{d n}{d \Omega}=\frac{1}{4 \pi}(1+\alpha \overrightarrow{\mathcal{P}} \cdot \hat{q})=\frac{1}{4 \pi}(1+\alpha \mathcal{P} \cos \theta)
$$

- Thus β gives the component of polarization perpendicular to the plane formed by $\overrightarrow{\mathcal{P}}_{p}$ and \hat{q}
- For an unpolarized parent baryon α is the magnitude of the longitudinal polarization of the decay baryon

$$
\overrightarrow{\mathcal{P}}_{d}=\alpha \hat{q}
$$

- If CP is conserved

$$
\bar{\Gamma}=\Gamma \quad \bar{\alpha}=-\alpha \quad \bar{\beta}=-\beta
$$

- Some CP violation observables

$$
\Delta=\frac{\Gamma-\bar{\Gamma}}{\Gamma+\bar{\Gamma}} \quad A=\frac{\alpha+\bar{\alpha}}{\alpha-\bar{\alpha}} \quad B=\frac{\beta+\bar{\beta}}{\beta-\bar{\beta}}
$$

- Search for direct CP violation in Λ decays Need to produce $\Lambda, \bar{\Lambda}$ with known polarizations

Experiment	Decay Mode	\mathbf{A}_{Λ}
R608 at ISR	$p p \rightarrow \Lambda X, \bar{p} p \rightarrow \bar{\Lambda} X$	$\mathbf{- 0 . 0 2} \pm \mathbf{0 . 1 4}$
DM2 at Orsay	$e^{+} e^{-} \rightarrow J / \Psi \rightarrow \Lambda \bar{\Lambda}$	$\mathbf{0 . 0 1} \pm \mathbf{0 . 1 0}$
PS185 at LEAR	$p \bar{p} \rightarrow \Lambda \bar{\Lambda}$	$\mathbf{- 0 . 0 1 3} \pm \mathbf{0 . 0 2 2}$

- Search for direct CP violation in Ξ and Λ decays

Experiment	Decay Mode	$\mathbf{A}_{\Xi}+\mathbf{A}_{\Lambda}$

E756 at Fermilab $\quad \Xi \rightarrow \Lambda \pi, \Lambda \rightarrow p \pi \quad 0.012 \pm \mathbf{0 . 0 1 4}$

Hyper $\mathcal{C P}$ APPROACH

- Produce unpolarized Ξ 's to obtain Λ 's with longitudinal polarization α_{Ξ} from Ξ decays

$$
\Xi^{-} \rightarrow \Lambda \pi^{-} \quad \bar{\Xi}^{+} \rightarrow \bar{\Lambda} \pi^{+}
$$

identified via decays

$$
\Lambda \rightarrow p \pi^{-} \quad \bar{\Lambda} \rightarrow \bar{p} \pi^{+}
$$

- In Λ rest frame

$$
\frac{d n}{d \Omega}=\frac{1}{4 \pi}\left(1+\alpha_{\Lambda} \overrightarrow{\mathcal{P}}_{\Lambda} \cdot \hat{q}_{p}\right)=\frac{1}{4 \pi}\left(1+\alpha_{\Lambda} \alpha_{\Xi} \cos \theta_{p}\right)
$$

- Measure asymmetry

$$
A_{\Lambda \Xi}=\frac{\alpha_{\Lambda} \alpha_{\Xi}-\alpha_{\bar{\Lambda}} \alpha_{\bar{\Xi}}}{\alpha_{\Lambda} \alpha_{\Xi}+\alpha_{\bar{\Lambda}} \alpha_{\bar{\Xi}}} \approx A_{\Lambda}+A_{\Xi}
$$

with 1×10^{-4} precision

THEORETICAL PREDICTIONS

- Superweak model predicts

No $\Delta \mathrm{S}=\mathbf{1} \mathrm{CP}$ violation

- For $\Lambda \rightarrow p \pi$ decay

	Δ_{Λ}	A_{Λ}	B_{Λ}
CKM	$<10^{-6}$	$(-5,-1) \times 10^{-5}$	$(0.6,3) \times 10^{-4}$
Weinberg	-8×10^{-6}	-2.5×10^{-5}	1.6×10^{-3}
Left-Right	$\mathbf{0}$	$(-0.1,6) \times 10^{-4}$	7×10^{-4}

- For $\Xi \rightarrow \Lambda \pi$ decay

	Δ_{Ξ}	A_{Ξ}	B_{Ξ}
CKM	$\mathbf{0}$	$(-10,-0.5) \times 10^{-5}$	$(10,1) \times 10^{-3}$
Weinberg	$\mathbf{0}$	-3.2×10^{-4}	3.8×10^{-3}
Left-Right	$\mathbf{0}$	$(-2.5,6) \times 10^{-5}$	-3.1×10^{-4}

SYSTEMATICS

If not corrected for will cause false asymmetries between Ξ^{-}and $\bar{\Xi}^{+}$decays

- Acceptance differences
* targeting differences
* magnetic field differences
* chamber efficiency differences
* temporal changes
* different backgrounds for Λ, Ξ^{-}versus $\bar{\Lambda}, \bar{\Xi}^{+}$
- Nonzero $\Xi^{-}, \bar{\Xi}^{+}$polarizations
- Different interaction cross sections of π^{-}and π^{+} and of p and \bar{p}

DIFFERENCES IN PRODUCTION BETWEEN Ξ^{-}AND $\bar{\Xi}^{+}$

Differences in Background after "Matching"

- Measured differences in the slope of $\cos \theta_{p}$ in the sidebands after the matching process-

Left sideband: $\quad \Delta \alpha=(0.5 \pm 1.0) \times 10^{-2}$
Right sideband: $\quad \Delta \alpha=(-0.9 \pm 1.1) \times 10^{-2}$

- (Background/Signal) is about 3×10^{-3} Contribution to uncertainty in α is $\leq 1.2 \times 10^{-4}$

The data taken with polarized Ξ 's provide important checks for systematic biases.

(Polarization is along the y-direction.)

Geometric biases for the CP test are greatly reduced because the events are analyzed in the Λ helicity frame which changes for each event.

PRELIMINARY RESULTS

The data sets and the total number of events remaining after all cuts :

Set	$\bar{\Xi}^{+}$	Ξ	Nb. events of $\bar{\Xi}{ }^{+}$	Nb. events of Ξ^{-}
I	$2095+2098$	$2090+2093$	1*086.878	11*466*695
II	$2263+2264$	$2262+2265$	$1^{\circ} 527 \times 962$	$14 * 609 \times 278$
III	$2363+2365$	2362	961×351	7*199*146
IV	$2371+2373+2374$	2369	2`288 576	3*895*153

- TOTAL: $5.9 \times 10^{6} \Xi^{+}$and $37.2 \times 10^{6} \Xi^{-}$ $1.2 \%\left(\bar{\Xi}^{+}\right)$and $1.9 \%\left(\Xi^{-}\right)$of the data

Results of Ξ CP Test Study ($\approx 1.7 \%$ of total sample)

$$
\boldsymbol{A}_{\Xi_{\Lambda}}=(-1.6 \pm 1.3 \pm 1.6) \times 10^{-3}
$$

DiMuon Decays

Measurements of $B\left(K^{ \pm} \rightarrow \pi^{ \pm} \mu^{+} \mu^{-}\right)$

- To estimate the number of $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$and $K^{-} \rightarrow \pi^{-} \mu^{+} \mu^{-}$, we used unbinned maximum likelihood fits:

$$
\mathcal{L}=e^{-\left(N_{S}+N_{B}\right)} \prod_{i=1}^{N}\left(N_{S} f_{s}\left(x_{i}\right)+N_{B} f_{b}\left(x_{i}\right)\right)
$$

N_{S} and N_{B} are number of signal and background.
x_{i} is an invarinat mass of event i.

$$
\begin{aligned}
f_{s}\left(x_{i}\right) & =\frac{1}{p(1) \sqrt{2 \pi}} e^{-\frac{\left(p(2)-x_{i}\right)^{2}}{2 p(1)^{2}}} \\
f_{b}(x) & =c\left(p(3)+p(4) x_{i}\right)
\end{aligned}
$$

- From the fit, the number of signal events are obtained as follows:

No. of $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}: 70.28_{-8.83}^{+9.45}$
No. of $K^{-} \rightarrow \pi^{-} \mu^{+} \mu^{-}: 34.09_{-6.39}^{+7.16}$

Preliminary Results

$$
\begin{aligned}
& B\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)=\left(9.1_{-1.2}^{+1.2} \pm 0.5\right) \times 10^{-8} \\
& B\left(K^{-} \rightarrow \pi^{-} \mu^{+} \mu^{-}\right)=\left(8.5_{-1.6}^{+1.8} \pm 0.6\right) \times 10^{-8}
\end{aligned}
$$

Combined Result:

$(8.9 \pm 1.0 \pm 0.5) \times 10^{-8}$

CP asymmetry in $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$and $K^{-} \rightarrow \pi^{-} \mu^{+} \mu^{-}$decays:

$$
\Delta_{K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}}=\frac{B\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)-B\left(K^{-} \rightarrow \pi^{-} \mu^{+} \mu^{-}\right)}{B\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)+B\left(K^{-} \rightarrow \pi^{-} \mu^{+} \mu^{-}\right)}
$$

$\Delta_{K^{+} \rightarrow \pi^{+}} \mu^{+} \mu^{-}=0.03 \pm 0.12 \pm 0.05$

Decays into like-sign dimuons rough estimates of eventual upper limits

Decay Mode	No. of Obs.	A	$\epsilon_{\text {cut }}$	No. of Normal.
$K^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}$	4	0.32	0.56	$\sim 3.8 \times 10^{9}$
$\Sigma^{-} \rightarrow p \mu^{-} \mu^{-}$	1	0.03	0.63	$\sim 1.6 \times 10^{10}$
$\Xi^{-} \rightarrow p \mu^{-} \mu^{-}$	0	0.11	0.33	$\sim 6.5 \times 10^{9}$

$$
\begin{gathered}
B\left(K^{+} \rightarrow \pi^{-} \mu^{+} \mu^{+}\right)<\sim 6.7 \times 10^{-8} \\
B\left(\Sigma^{-} \rightarrow p \mu^{-} \mu^{-}\right)<\sim 1.1 \times 10^{-8} \\
B\left(\Xi^{-} \rightarrow p \mu^{-} \mu^{-}\right)<\sim 1.0 \times 10^{-8}
\end{gathered}
$$

