Recent Results On Hyperon Decays

Kam-Biu Luk University of California, Berkeley And Lawrence Berkeley National Laboratory

KAON 2005, Evanston, IL June 14, 2005

Contents:

- Some experiments
- Decay parameter α and Direct CP violation
- Phase-shift difference of $\Lambda\pi^-$
- Radiative decays
- Weak radiative decay
- Semi-leptonic decay
- Observation of $\Sigma^+ \rightarrow p \mu^+ \mu^-$
- Search for $\Xi^- \rightarrow p\mu^-\mu^-$
- Search for $\Delta S=2$ non-leptonic decays

The NA48 Spectrometer

The HyperCP Spectrometer

- Protons on target = (7-8) GHz ٠
- Sec. beam inten. = (10-15) MHz•
- Total triggers •

Plan View

Target

Proton

Beam

magnet

Targets:

6.0 cm Cu

2.2 cm Cu

Event Display of HyperCP

High-Statistic Samples of Hyperons

Non-leptonic Decay of Hyperon

• Consider the weak decay

 $\Lambda \rightarrow p \pi$

the decay matrix element is:

$$M(\Lambda \to p\pi) \propto \chi_p^{\dagger} (S + P\vec{\sigma} \cdot \hat{q}_p) \chi_{\Lambda}$$

where

- S parity-violating amplitude of the S-wave of the final state
- *P* parity-conserving amplitude of the P-wave of final state
- \hat{q}_p unit vector along the proton momentum
- χ two-component spinors
- Decay parameters:

$$\alpha_{\Lambda} = \frac{2Re(S^*P)}{|S|^2 + |P|^2} \qquad \beta_{\Lambda} = \frac{2Im(S^*P)}{|S|^2 + |P|^2} \qquad \gamma_{\Lambda} = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$
 with:

$$\alpha_{\Lambda}^2 + \beta_{\Lambda}^2 + \gamma_{\Lambda}^2 = 1$$

Non-leptonic Decay of Hyperon (cont.)

• In the rest frame of the decaying Λ the angular distribution of the proton is:

• Polarization of Λ produced in the decay of polarized $\Xi \rightarrow \Lambda \pi$ is:

$$\vec{\mathbf{P}}_{\Lambda} = \frac{(\alpha_{\Xi} + \vec{\mathbf{P}}_{\Xi} \cdot \hat{\mathbf{q}}_{\Lambda})\hat{\mathbf{q}}_{\Lambda} + \beta_{\Xi}\vec{\mathbf{P}}_{\Xi} \times \hat{\mathbf{q}}_{\Lambda} + \gamma_{\Xi}\hat{\mathbf{q}}_{\Lambda} \times (\vec{\mathbf{P}}_{\Xi} \times \hat{\mathbf{q}}_{\Lambda})}{(1 + \alpha_{\Xi}\vec{\mathbf{P}}_{\Xi} \cdot \hat{\mathbf{q}}_{\Lambda})}$$

Direct CP Violation in \Xi-\Lambda Non-leptonic Decays

• Get longitudinally polarized Λ from **unpolarized** $\Xi \rightarrow \Lambda \pi^-$ decay:

 $\mathbf{P}_{\Lambda} = \alpha_{\Xi} \mathbf{p}_{\Lambda}$ with $\alpha_{\Xi} = -0.458 \pm 0.012$

• In the Λ helicity frame, the angular distribution of the proton is:

 $\frac{dN_{p}}{d\cos\theta_{p\Lambda}} = \frac{N_{0}}{2} \left(1 + \alpha_{\Lambda} \alpha_{\Xi} \cos\theta_{p\Lambda}\right)$ identical distribution for the \overline{p} from $\overline{\Xi} - \overline{\Lambda}$ decay if CP is conserved.

Define CP-asymmetry parameter:

$$A_{\Xi\Lambda} = \frac{\alpha_{\Xi}\alpha_{\Lambda} - \alpha_{\Xi}\alpha_{\overline{\Lambda}}}{\alpha_{\Xi}\alpha_{\Lambda} + \alpha_{\Xi}\alpha_{\overline{\Lambda}}} \approx A_{\Xi} + A_{\Lambda}$$

Measuring $A_{\Xi\Lambda}$ With Direct Weighting Method

- HyperCP analysed $118.6 \times 10^{6} \Xi^{-}$ and $41.9 \times 10^{6} \Xi^{+}$ near the end of the 1999 run.
- Matched by weighting momentum magnitude, y slope, and y coordinate of Ξ at the exit of the hyperon channel.

Measuring $A_{\Xi\Lambda}$ With Direct Weighting Method (cont.)

of 1.4×10^{-4} for $\delta_{\text{input}} = 0$.

• Begin to test beyond-the-standard model predictions

β_{Ξ} , γ_{Ξ} and Λ - π Strong Phase-Shift Difference

• The CP asymmetry of $\Xi \rightarrow \Lambda \pi$ is

 $A_{\Xi} \approx -\tan(\delta_{P} - \delta_{S})_{\Xi} \sin(\phi_{P} - \phi_{S})_{\Xi}$

where δ 's are the strong phase-shifts, and ϕ 's are the weak CP phases.

• Determine the strong phase-shift difference

 $\beta_{\Xi} / \alpha_{\Xi} = -\tan(\delta_{P} - \delta_{S})_{\Xi}$

• Require studying the proton distributions with **polarized** Ξ - Λ decays:

Polarization at Production

Hyperons can be polarized when they are produced by **unpolarized** protons on a **unpolarized** target:

β_{Ξ} , γ_{Ξ} and Λ - π Strong Phase-Shift Difference (cont.)

• In practice,

,
$$\tan \phi_{\Xi} = \frac{\beta_{\Xi}}{\gamma_{\Xi}} = \frac{S_x}{S_y}$$
$$\beta_{\Xi} = \sqrt{1 - \alpha_{\Xi}^2} \sin \phi_{\Xi}, \quad \gamma_{\Xi} = \sqrt{1 - \alpha_{\Xi}^2} \cos \phi_{\Xi}$$

• E756 analyzed 1.35×10^6 polarized $\Xi^- \rightarrow \Lambda \pi^-$ decays and determined

 $\phi_{\Xi} = -1.61^{\circ} \pm 2.66^{\circ} \pm 0.37^{\circ}$

$$\beta_{\Xi} = -0.025 \pm 0.042 \pm 0.006$$

$$\gamma_{\Xi} = +0.889 \pm 0.001 \pm 0.007$$

and found Λ - π strong phase-shift difference to be

$$\delta_{\rm P} - \delta_{\rm S} = 3.17^{\circ} \pm 5.28^{\circ} \pm 0.73^{\circ}$$

indicating the difference is likely small.

$\beta_{\Xi}, \gamma_{\Xi}$ and A- π Strong Phase-Shift Difference (cont.)

HyperCP used 132 millions polarized $\Xi^- \rightarrow \Lambda \pi^-$ decays to obtain:

$p_{\Xi} (\text{GeV}/c)$	S_x	S_y	ϕ_{Ξ} (degree)	
139	-0.00037 ± 0.00047	0.01191 ± 0.00041	-1.77 ± 2.28	
152	-0.00046 ± 0.00047	0.01447 ± 0.00038	-1.81 ± 1.88	
162	-0.00038 ± 0.00041	0.01557 ± 0.00035	-1.39 ± 1.49	
173	-0.00074 ± 0.00040	0.01880 ± 0.00036	-2.26 ± 1.22	
191	-0.00123 ± 0.00040	0.02109 ± 0.00040	-3.33 ± 1.08	
Average			-2.39 ± 0.64	± 0.64

HyperCP, PRL 93, 011802 (2004)

$$\begin{split} \beta_{\Xi} &= -0.037 \pm 0.011_{stat} \pm 0.010_{syst} ,\\ \gamma_{\Xi} &= 0.888 \pm 0.0004_{stat} \pm 0.006_{syst} ,\\ \delta_{p} - \delta_{s} &= 4.6^{\circ} \pm 1.4^{\circ}_{stat} \pm 1.2^{\circ}_{syst} \end{split}$$

which is comparable to the p- π strong phase-shift difference, and small, indicating CP-odd effects in Ξ and Λ decays are tiny.

Decay Parameter α_{Ω} of $\Omega \rightarrow \Lambda K$ **Decay**

- Predict the decay is predominantly parity-conserving (P-wave dominant).
- The D-wave amplitude is thus small; hence α is expected to be close to 0.

• For the decay sequence

```
\Omega^{-} \rightarrow \Lambda K^{-} \stackrel{\leftarrow}{\rightarrow} p\pi^{-}
```

proton distribution in the Λ helicity frame is:

$$\frac{\mathrm{dN}}{\mathrm{d}\cos\theta_{\Lambda \mathrm{p}}} = \frac{\mathrm{N}_{0}}{2} \left(1 + \alpha_{\Omega}\alpha_{\Lambda}\cos\theta_{\Lambda \mathrm{p}}\right)$$

• HyperCP obtained final results:

 $\alpha_{\Omega} \alpha_{\Lambda} = [1.33 \pm 0.32_{\text{stat}} \pm 0.52_{\text{sys}}] \times 10^{-2} \quad (1997)$ $\alpha_{\Omega} \alpha_{\Lambda} = [1.14 \pm 0.12_{\text{stat}} \pm 0.10_{\text{sys}}] \times 10^{-2} \quad (1999)$

Using $\alpha_{\Lambda} = 0.642 \pm 0.013$,

$$\alpha_{\Omega} = [2.07 \pm 0.50_{\text{stat}} \pm 0.81_{\text{sys}}] \times 10^{-2} \quad (1997)$$

$$\alpha_{\Omega} = [1.78 \pm 0.19_{\text{stat}} \pm 0.16_{\text{sys}}] \times 10^{-2} \quad (1999)$$

confirming theoretical predictions.

Decay Parameter α_{Ω} of $\Omega \rightarrow \Lambda K$ **Decay (cont.)**

• Using the same code and event-selection requirements, based on 1.9×10^6 $\overline{\Omega}^+ \rightarrow \overline{\Lambda} K^+$, $\overline{\Lambda} \rightarrow \overline{p} \pi^+$ events, **HyperCP extracted a preliminary value**:

 $\alpha_{\bar{\Omega}} \alpha_{\bar{\Lambda}} = [1.16 \pm 0.18_{\text{stat}} \pm 0.16_{\text{syst}}] \times 10^{-2}$

Using $\alpha_{\overline{\Lambda}} = -0.642 \pm 0.013$,

or

$$\alpha_{\overline{\Omega}} = [-1.81 \pm 0.28_{\text{stat}} \pm 0.25_{\text{syst}}] \times 10^{-2}$$

• Test of CP symmetry in $\Omega \rightarrow \Lambda K$ decay:

From the measured values of $\alpha_{\Omega} \alpha_{\Lambda}$ and $\alpha_{\overline{\Omega}} \alpha_{\overline{\Lambda}}$, the CP asymmetry is determined to be

$$\delta_{\Omega\Lambda} = \alpha_{\Omega}\alpha_{\Lambda} - \alpha_{\overline{\Omega}}\alpha_{\overline{\Lambda}} = [-0.02 \pm 0.22(\text{stat}) \pm 0.19 \text{ (syst)}] \times 10^{-2}$$

$$A_{\Omega\Lambda} = \frac{\alpha_{\Omega}\alpha_{\Lambda} - \alpha_{\overline{\Omega}}\alpha_{\overline{\Lambda}}}{\alpha_{\Omega}\alpha_{\Lambda} + \alpha_{\overline{\Omega}}\alpha_{\overline{\Lambda}}} = \left[-0.87 \pm 9.41(stat) \pm 8.20(syst)\right] \times 10^{-2}$$

17

Radiative Decay

- Width of $\Lambda(1520) \rightarrow \Lambda \gamma$ is predicted to be between 30 keV and 215 keV
- Predictions are sensitive to the SU(3) structure of the wave function of $\Lambda(1520)$
- **SPHINX** studied the 70 GeV $p + N \rightarrow \Lambda(1520)K^+ + N$ reaction to look for $\Lambda(1520) \rightarrow \Lambda\gamma$ decays.

Obtained: Br[$\Lambda(1520) \rightarrow \Lambda \gamma$] = $(1.02 \pm 0.21_{stat}) \times 10^{-2}$, $\Gamma[\Lambda(1520) \rightarrow \Lambda \gamma] = (159 \pm 35_{stat}) \text{ keV}$

Radiative Decay (cont.)

Weak Radiative Decay: $\Xi^0 \rightarrow \Lambda \gamma$

- The decay is completely described by the decay rate, and three decay parameters $\alpha_{\Xi\Lambda\gamma}$, $\beta_{\Xi\Lambda\gamma}$, $\gamma_{\Xi\Lambda\gamma}$ such that $\alpha^2 + \beta^2 + \gamma^2 = 1$.
- Theoretical predictions vary widely:
 - pole models, χPT (satisfying the *Hara theorem*): α is negative
 - vector-meson-dominance models, quark model: α is positive

For the decay sequence

$$\Xi^{0} \rightarrow \Lambda \gamma$$
$$\stackrel{\mathsf{L}}{\rightarrowtail} p\pi$$

the proton distribution in the Λ helicity frame is:

$$\frac{\mathrm{dN}}{\mathrm{d\cos}\,\theta_{\mathrm{Ap}}} = \frac{\mathrm{N}_0}{2} \left(1 - \alpha_{\mathrm{EAy}}\alpha_{\mathrm{A}}\cos\theta_{\mathrm{Ap}}\right)$$

Weak Radiative Decay: $\Xi^0 \rightarrow \Lambda \gamma$ (cont.)

• NA48 determined:

Br($\Xi^0 \rightarrow \Lambda \gamma$) = (1.16 ± 0.05_{stat} ± 0.06_{sys}) ×10⁻³ $\alpha_{\Xi\Lambda\gamma} = -0.78 \pm 0.18_{stat} \pm 0.06_{sys}$, supporting Hara theorem.

Semi-leptonic Decay: $\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e$

• Can be used to extract $|V_{us}|$.

 $Br(\Xi^0 \rightarrow \Sigma^+ e^- \overline{\nu}_e) = (2.51 \pm 0.03_{stat} \pm 0.11_{sys}) \times 10^{-4}$

for comparison: $(2.71 \pm 0.38) \times 10^{-4}$ KTeV published (1999) ₂₂

Observation of $\Sigma^+ \rightarrow p\mu^+\mu^-$ **Events**

- **HyperCP** hunt for FCNC through $\Sigma^+ \rightarrow pl^+l^-$ decays.
- Look for events with
 - three charged tracks of which two are tagged as muons
 - a good decay vertex within the decay region
 - the decaying particle coming from the target
 - proton carries at least 0.68 of the total momentum

Observation of $\Sigma^+ \rightarrow p\mu^+\mu^-$ **Events (cont.)**

• Look for

 $\Sigma^+ \rightarrow p\pi^0$ $\hookrightarrow e^+e^-\gamma$ for normalization.

• Number of Σ^+ decays in the 1999 run is $(2.14 \pm 0.31) \ge 10^{10}$

• If 3 candidates are $\Sigma^+ \rightarrow p\mu^+\mu^-$ decays

$$\begin{split} B(\Sigma^+ \to p \mu^+ \mu^-) &= [8.6^{+6.6}_{-5.4} \pm 5.0] \times 10^{-8} \ \text{(uniform decay)} \\ B(\Sigma^+ \to p \mu^+ \mu^-) &= [1.3^{+1.0}_{-0.8} \pm 0.7] \times 10^{-7} \ \text{(form factor)} \end{split}$$

• If they are background events,

$$\begin{split} & B(\Sigma^+ \to p \mu^+ \mu^-) < 1.1 \times 10^{-7} \quad (\text{uniform decay}), \ @ \ 90\% \ \text{C.L.} \\ & B(\Sigma^+ \to p \mu^+ \mu^-) < 1.6 \times 10^{-7} \quad (\text{form factor}), \qquad @ \ 90\% \ \text{C.L.} \end{split}$$

Observation of $\Sigma^+ \rightarrow p\mu^+\mu^-$ **Events (cont.)**

 Dimuon masses for 3 candidates are clustered within ~ 1 MeV/c²:

 Probability for dimuon masses of 3 events to be within 1 MeV/c² for Σ⁺ → pμ⁺μ⁻ decays in SM is less than 1%. The μ⁺μ⁻ of the 3 events could come from the decay of a new particle X⁰:

Search For $\Xi^- \rightarrow p\mu^-\mu^-$ **Decay**

• It is a $\Delta L = 2$ process mediated by a Majorana neutrino:

Based on a sample of ~10⁹ Ξ⁻, HyperCP set a limit on

 $Br(\Xi^- \rightarrow p\mu^-\mu^-) < 4.0 \times 10^{-8}$ at 90% c.l.

which is four orders of magnitude better than the previous best limit, but is still very far away from any theoretical predictions.

Search For ∆**S=2 Non-leptonic Decays**

- A second-order weak process that has only been observed in $K^0-\overline{K}^0$ mixing.
- Such process could be enhanced in hyperon decays via new parity-odd mechanism (He and Valencia).
- Using about a data set containing $\sim 3 \times 10^6 \Omega^- \rightarrow \Lambda K^-$ decays, **HyperCP** look for $\Omega^- \rightarrow p\pi^-\pi^-$ events:

Summary

- Current generation of dedicated experiments for studying strange particles have collected large samples of hyperons for precision measurements and for high-sensitivity searches.
- Many results are consistent with theoretical predictions.
- There is no sign of direct CP violation in the Ξ - Λ decays yet, down to the ~6 × 10⁻⁴ level.
- HyperCP has observed three $\Sigma^+ \rightarrow p\mu^+\mu^-$ events that call for further investigation.