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Abstract

An algorithm is presented for non-iterative fitting of a track in
magnetic field. Results of measurements of beam momenta using this
fitting method are presented.

1 Introduction

Fitting trajectory of a particle through non-uniform magnetic field
is computationally heavy, since in general one has to swim through
magnetic field multiple times and in the case of iterative fitting, even
on modern CPU’s the fitting thousands of tracks takes a long time. If
track measurements are made at given z positions, and track angles
are not too large with respect to z-axis, non-iterative template track
fitting works very well. In this case the required number of swims
through magnetic field can be as small as one.

As charged particle traverses magnetic field, to first order its bend
angle and therefore displacement from straight-line track is propor-
tional to q/p, the charge and momentum of the particle. That is, at a
given z, we can represent particle position with 5 parameters: Q = q/p,
position (x, y) and direction (dx/dz, dy/dz) at z = z0:

{

x = x0 + dx
dz

∣

∣

z=z0

· (z − z0) + Qλx(z)

y = y0 + dy

dz

∣

∣

∣

z=z0

· (z − z0) + Qλy(z),
(1)

where λx and λy can be interpreted as displacement from straight-line
trajectory for a particle with q/p = 1 and can be calculated from any
track by swimming it from z0 and setting λ to displacement times p/q.
If track angles are not too large (dx/dz < 1) in the vicinity of z, then
the errors resulting from this representation are negligible.
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2 Fitting

Using track representation given by Equation 1, is especially appropri-
ate for wire chambers, since the plane of the chamber is perpendicular
to the z-axis. Coordinate u, perpendicular to wire direction in any
given plane, is given by

ui = x cos θi − y sin θi, (2)

where angle θi between the y-axis and wires in the plane is measured
clockwise with θ = 0 for vertical wires. Thus, we can write prediction
for u at zi as

u(zi) =
∑

j

cijpj , (3)

where

~p =


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, ~ci =













cos θi

− sin θi

(zi − z0) cos θi

−(zi − z0) sin θi

λy(zi) cos θi − λx(zi) sin θi













.

To solve for ~p, we write the sum of weighted residuals squared:

χ2 =
∑

i

wi(ui −
∑

j

cijpj)
2, (4)

and by defining

Vj =
∑

i

wiuicij

Mjk =
∑

i

wicijcik

solution to ~p which minimizes χ2 is

~p = M−1~V . (5)

It follows that

χ2 =
∑

i

wiu
2

i − ~p · ~V

σ2

i = (M−1)ii
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3 Application to beam tracks

Template track fit is perfectly suited to non-interacting beam tracks
because a track has up to 34 measurement points from 9 chambers
spanning more than 62 m and bend angles are quite small. In the
Jolly Green Giant and Rosie

∫

|By| dz ≈ 1Tm,

along the center of each magnet, so the lowest momentum 5 GeV/c
beam tracks will get a transverse kick of ∼ 65 mrad.

My approach to the fit was to use seed λ’s calculated with
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to estimate track parameters, then recalculate λ’s by swimming the
track through the experiment using the current guess at parameters
and refit. Typically, λ’s used for the final fit differ from the seed values
by less than 1% regardless of track direction and momentum.

4 Results

One of the first tasks completed with fast fit was tuning the relative
magnet strengths in software. Although field in both magnets is mea-
sured with Hall probes (one above the bottom coil and one below the
top coil), their locations were not known precisely. While Rosie field
is sufficiently uniform in the vicinity of Hall probes, JGG field is very
non-uniform in the vicinity of the Hall probes, and as Figure 1 shows,
all momentum measurements came 5 − 10% high.

Signs that something was wrong included a systematically smaller
momentum measurement if the first two beam chambers (with the
largest lever arm) were excluded from the shift. Ideally, one would
not expect the central value of momentum measurement to shift if any
one detector was taken out of the measurement. Second sign was clear
dependence of momentum on χ2 per degree of freedom of the track.

To find out whether magnet strengths are not correctly matched in
the software, a scan of JGG scaling factor was done. The most obvious
metrics are number of tracks with χ2 per degree of freedom less than
0.4 and the average χ2 of all tracks, shown in Figure 3.

Once chamber wire planes were aligned, we measured momentum
for each run and agreement between the measured momentum and
beamline setting is very good, as shown on Figure 4.
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Figure 1: Initial measurement of beam momenta. Besides the 120 GeV/c
primary, 5,±20,±35,±58, and ±84 GeV/c secondary beams were measured.
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Figure 2: a) Ratio of momentum measurements with 7 and 9 chambers. b)
Dependence of momentum measurement on χ2 per degree of freedom for
+58 GeV/c run.
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Figure 3: JGG scale factor scan results. From top to bottom −35 GeV/c,
+58 GeV/c, +120 GeV/c runs.
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Figure 4: Measured momentum vs beamline setting for 2600 runs (left) and
120 GeV/c momentum measurement (right).

5 Conclusion

Template track fit is a fast, non-iterative track fitting method that is
especially applicable to fitting tracks with small angles with respect to
z-axis. If a good set of seed coefficients can be provided, then only one
swim per track is sufficient to obtain a reliable track fit.

While this note describes using this method for fitting tracks with
data from wire chambers, there is no reason why the method will not
work with other tracking detectors, in particular the time projection
chamber. The only difference will be that every 3-dimensional TPC
measurement will have to be represented as two 2-dimensional mea-
surements (xi at zi and yi at zi) with corresponding θx = 0 and
θy = 90◦. Thus the fitting algorithm can be used for global track-
ing for those tracks where dz/ds does not change sign.

6


