

PLASTIC SCINTILLATOR DEVELOPMENTS: PAST, PRESENT AND FUTURE

Anna Pla-Dalmau and Alan D. Bross

PPD Mini-Review

October 6, 2009

- Review of our early work in plastic scintillators
 This phase was dominated by R&D work.
- Extruded plastic scintillators
 - FNAL-NICADD extrusion line impact to the physics community
 - This phase is dominated by service work.
- Next generation \rightarrow back to R&D:
 - What would be beneficial to have in plastic scintillators?

- Fermilab has a long history of work in plastic scintillators.
- Late 80's and early 90's:
 - Scintillating and WLS plastic optical fibers.
 - Scintillating tile and WLS fiber arrangements
 - Radiation damage studies
 - New fast, green dopants

캮

- Plastic Scintillator has driven the development of significant infrastructure at Fermilab:
 - Thin-Film facility
 - Mirroring and coatings, photocathode work
 - CNC Routing
 - Tile-fiber detectors
 - Machine Development
 - Diamond polishing, optical connectors and VLPC packaging
 - Scintillation Detector Development (SDD) Laboratory
 - Plastic Scintillator R&D
 - Fiber production, characterization, and test
 - Extruded scintillator

...was dominated by the economic concern that plastic scintillators were too expensive for large detectors – neutrino detectors:

OBJECTIVE: USE LOW COST SCINTILLATOR

→ APPROACH: NEW TECHNIQUE → EXTRUSION

EXTRUDED PLASTIC SCINTILLATOR

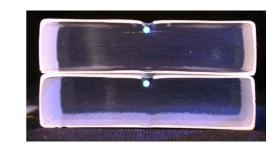
ADVANTAGES:

- Use commercial polystyrene (PS) pellets
 - No monomer purification problems
- Processing flexibility
 - Manufacture of essentially any shape

DISADVANTAGES:

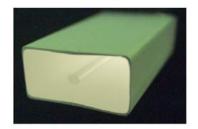
- Poorer optical quality
 - Particulate matter in PS pellets
 - Additives in PS pellets

SOLUTION:

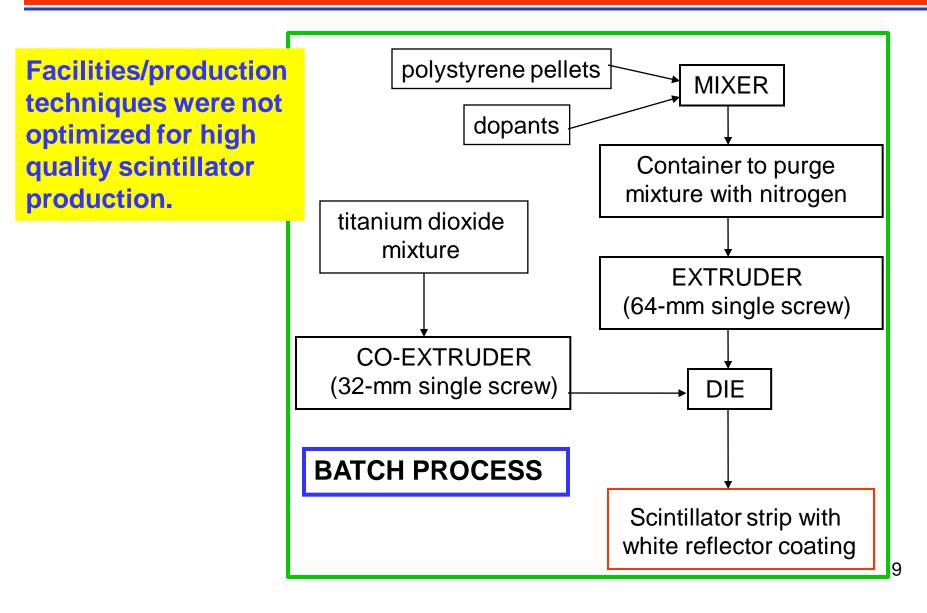

Use a WLS fiber

EARLY PROJECTS

D0 preshower detectors

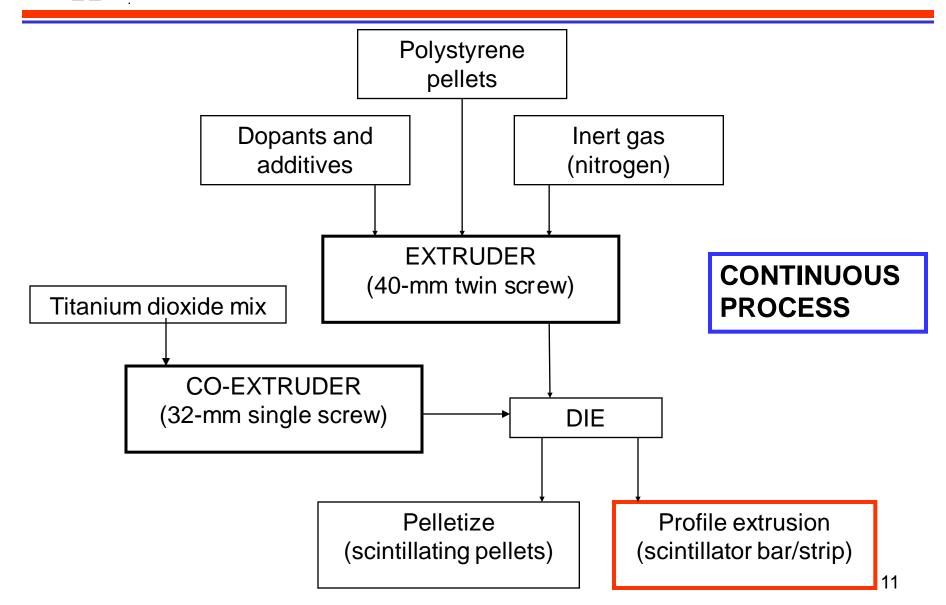


- SciBar K2K/SciBoone
- Star


• MINOS

Mayan Pyramid Mapping
 UT-Austin

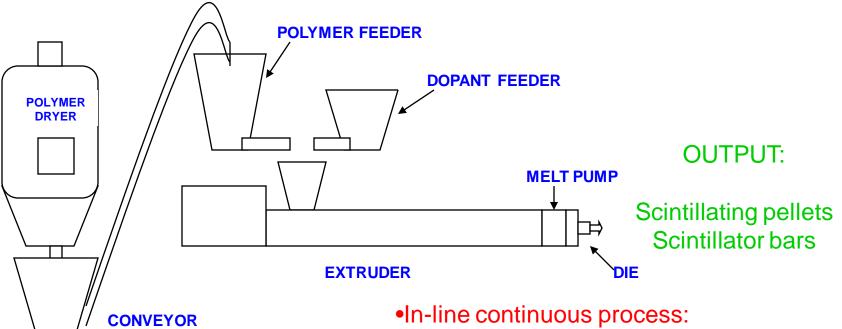
EXTRUSION NOT AT FERMILAB: MINOS, STAR, K2K... 1999 – 2003



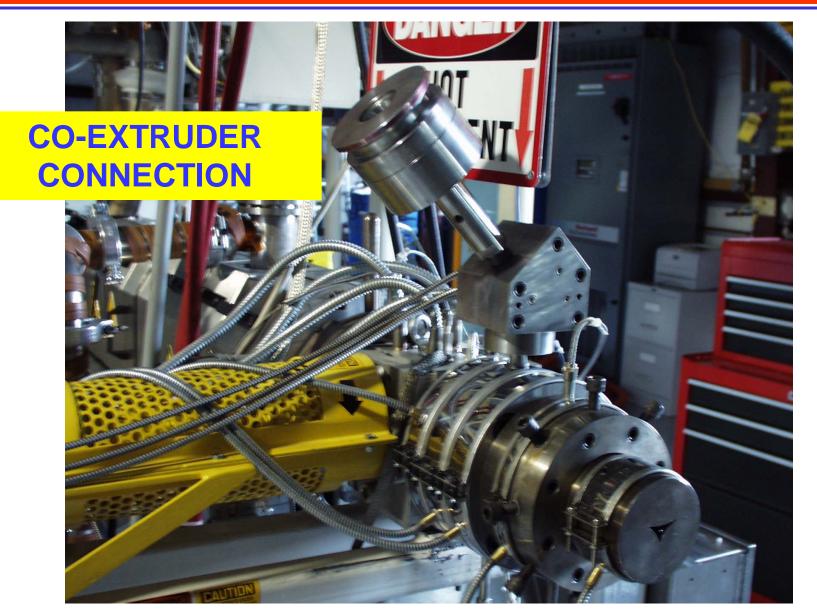
EXTRUSION AT ITASCA PLASTICS: PURGING STAGE, BATCH PRODUCTION

業

GOAL SINCE 1999: IN-LINE EXTRUSION

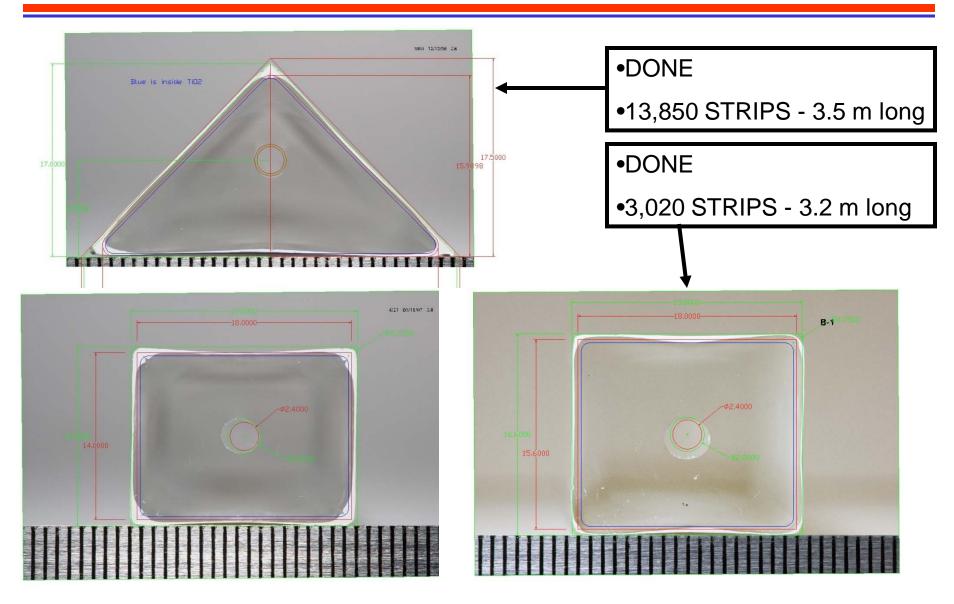


13

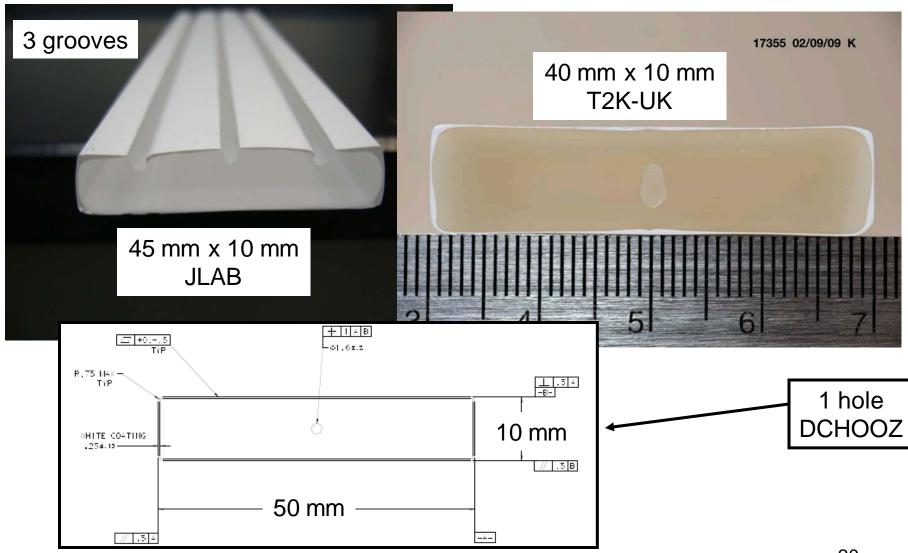

•Line under nitrogen atmosphere:

- •Drying under nitrogen
- Each piece of equipment is purged

- - Less handling of raw materials
 - •Precise metering of feeders
 - •Twin-screw extruder (better mixing)
 - Melt pump offers steady output
 - 15 Control instrumentation



- Minerva First project
 - Extruder operation, lots of R&D, production
- Hall B JLAB → 3 grooves! still developing
- T2K ND280 Productions
 - Rochester MINERvA's triangle
 - Lancaster 40 mm x 10 mm 1 hole
 - Kyoto (Ingrid) 50 mm x 10 mm 1 hole
- Double-Chooz Biggest production
 50 mm x 10 mm 1 hole
- Amiga Pierre Auger \rightarrow near future



MINERVA SCINTILLATOR:

OTHER SCINTILLATOR SHAPES

#

PAST AND FUTURE R&D AT THE FNAL/NICADD FACILITY

- PAST Improve die design:
 - Study and test new dies designed with Computational Fluid Dynamics simulations:
 - Past: collaboration with university
 - Recently: purchased from die industry using these tools
- FUTURE Potential Process Modifications
 - Run multiple threads
 - Maximizes throughput of machine
 - Stability/Cooling issues
 - Co-extrude Kuraray fiber with the scintillator profile
 - Reduce handling of WLS
 - Processing temperature issues

- Extruded scintillator profiles use readout with WLS Fiber.
- Logical next step in extruded scintillator.
- Advantages of co-extrusion
 - Almost no fiber handling, yielding significant manpower cost reduction
 - Almost perfect scintillator-fiber optical coupling
 - Greater uniformity with respect to light coupling between the scintillator and WLS fiber

- Co-extrusion of scintillator and fiber:
 - Fiber needs to survive heat from thick scintillator layer
 - Preliminary tests performed about 8 years ago
 - Post-clad Kuraray fiber with a thin plastic layer:
 - Polyethylene
 - Kynar
 - Teflon
 - Thin 100-300 μm coatings
 - No fiber degradation was observed:
 - No losses in attenuation length
 - WLS fiber did see large heat excursion

캮

- Develop Co-Extrusion Die Tooling with ISO-9000 qualified Vendor - Guill Tool
 - Guill has experience with this type of die.
 - Developed tooling for co-extrusion applications that involve polymers with different melt characteristics which required pre-cooling of one or more of the components in the extrusion.
- Concerns:
 - Melt temperature for scintillator extrusions is above the glass transition temperature of the fiber.
 - Much larger heat soak than in our previous tests.

- Talk to them at extrusion show
- Visited factory in Providence, RI
- Company includes full engineering and manufacturing capabilities
- Dies are more expensive
- 12 weeks for order delivery

NEW DIE MANUFACTURER

COST ESTIMATE – MATERIALS

May-08

YEAR 1	Estimated Materials and Services Cost (\$)
<i>Material*</i> Polystyrene pellets** (3 gaylords, 2220 Kg @ \$2.60 each) Dopants** (48 units @ \$165 each) Co-extrusion die*** Fiber feeding system****	\$5,772.00 \$7,920.00 \$52,000.00 \$15,000.00
Estimated Direct Cost	\$80,692.00

*These expenses will be incurred in the purchase of both the die-fiber delivery assembly and the raw materials (polystyrene and dopants)

needed for testing this new die.

**Price based on recently purchased materials.

***Budgetary quotation from Guill Tool & Engineering Co., Inc.

number 19522 plus 25% contingency.

****This is an estimate after discussions with a Fermilab designer.

Extrusion line will need to be reconfigured.

Extrusion crew – 3 months:

- 2 Mechanical technicians full time
 1 person started phased-retirement!
- 1 QC technician full time
- 1 Engineering physicist full time

NOTE: WE COULD USE CO-OP STUDENTS!! We had a great co-op program with 4 to 5 students cycling through the year.

28

Scintillator/fiber co-extrusion is not a trivial endeavor:

- A few important technical challenges
- Some economic hurdles
- For future experiments it has the potential to yield an overall better product and save money in handling and assembly costs.