MECHANICAL SYSTEMS

WBS I.I – Bubble Chamber

WBS I.2 – High Purity Fluid Handling

WBS 1.7 – Commissioning (as related to mechanical systems) SAFETY READINESS

0

Outline

- I will go over the Status as overlaid on the Schedule that was presented in May 2009 review.
- I will then go into more detail
 - WBS I.I Bubble Chamber
 - WBS I.2 High Purity Fluid Handling
 - Safety Readiness for NUMI
- My goal is to leave you with an understanding of what's left to do before NUMI commissioning run.
- I will identify for you what technical issues/challenges are embedded in that work.
- I will also try to estimate the resources necessary to complete the remaining mechanical tasks.

	WBS	Activity Name			June		\square		
1	1	COUPP-60 KG							+
2	1.1	BUBBLE CHAMBER						•	\top
3	1.1.1	Pressure vessel							\top
11	1.1.2	Quartz to metal seal development							
14	1.1.3	Control system							
22	1.1.4	Hydraulics and piping							
27	1.1.5	Quartz vessel							
31	1.1.6	Expansion chamber							
32	1.1.6.1	Specifications	D	ONE					
33	1.1.6.2	Design							
34	1.1.6.3	Prototype							
35	1.1.6.4	High Purity Chamber							
36	1.1.6.4.1	Parts preparation							
37	1.1.6.4.2	welding and leak check							
38	1.1.6.4.3	Assembly		,					
39	1.1.6.4.3.1	Make fixture to hold jar during assembly			Done	in Jun	e.		
40	1.1.6.4.3.2	Make restraint for bellows under vacuum and cleaning						ll flange	
41	1.1.6.4.3.3	Test assembly to prototype quartz			Skippe	d beca	use a	ll flange	es (
42	1.1.6.4.3.4	Packaging for shipment to Astropak							
43	1.1.6.4.3.5	Cleaning at Astropak					<mark>e in l</mark>	Tay	
44	1.1.6.4.3.6	Assemble Quartz to expansion chamber							
45	1.1.6.4.3.7	Procure valves and instruments for HP inner vessel	Done	e in N	1ay/Jur	ne			
46	1.1.6.4.3.8	Clean valves and instruments at A0	Valves	clean	when o	ordere	d Do	ne	
47	1.1.6.4.3.9	Assemble valves and instruments onto chamber							
48	1.1.6.4.3.10	Leak check vessel assembly						N	
49	1.1.6.4.3.11	Inner Vessel Assembly Complete						Ŏ	
50	1.1.7	System Level Documentation							

		WBS	Activity Name			2009
		VVD3		Мау	June	July
	51	1.2	HIGH PURITY FLUID HANDLING			
	52	1.2.1	Documentation			
	57	1.2.2	Millipore water system			
	58	1.2.3	Electropolished vessels			
	59	1.2.3.1	Procurement			
	60	1.2.3.2	Leak checking			
	61	1.2.3.3	Final flange seal solution		Left to do	
	62	1.2.4	Parts procurements			
	63	1.2.4.1	Vacuum Pump			
	64	1.2.4.2	Circulation Pump			
	65	1.2.4.3	Valves and instruments			
	66	1.2.4.4	Piping		Done, April th	ru june
333	67	1.2.4.5	Chillers			
	68	1.2.5	Skid frame construction			
	69	1.2.6	Parts cleaning at A0			
	70	1.2.7	Orbital welder setup at Lab 3			
	71	1.2.8	Assembly and welding We tried to start mi	d-Nov, But No	welder	
	72	1.2.9	Commissioning			Feb. 2010?
	73	1.2.10	Water flushing		Mar. 2010?	
_ef	ft t	o do	Fill inner vessel with high purity water			•
003	10		Inner vessel filled with water		Mar	2010?
	76	1.3	NEUTRON SHIELD AND COSMIC TAGGER		1 101.	2010.
	94	1.4	R&D			
				Мау	June	July
299.	0000			•	•	•

X Still need to do this, I day + procurement time.

 $\frac{1}{4}$ " tube formula done, ground work done, NEED WELDER TIME.

Delayed due to PID and layout delays (RAR), Estimate 3 weeks, If we have WELDER

	WBS	Activity Name			2009
	1103	Activity Name	Мау	June	July
105	1.5	DATA ACQUISITION AND HANDLING			
106	1.5.1	Documentation			
111	1.5.2	VIDEO AND ILLUMINATION HARDWARE			
126	1.5.3	DAQ Hardware			<u>^</u>
127	1.5.3.1	Trigger Box (CTIC)	 _	O	
128	1.5.3.2	PXI Crate and NI interface			
129	1.5.3.3	Fast digitizers for acoustic sensors and breakouts	omments, for ot	rep-	
130	1.5.3.4	Slow digitizer		- ^v 0 [·] − − −	
131	1.5.3.5	Signal conditioning box		ers	
132	1.5.3.6	CTIC interface board	<u>لە تە</u>		
133	1.5.3.7	COUPP30L	<u>ارک</u>		
134	1.5.3.8	Private camera network	r 51		
135	1.5.3.9	Integration	ent		
136	1.5.4	DAQ Software	mme		
137	1.5.4.1	Camera test software			
138	1542	Develop on-camera code			
139	1.5.4.3	Test on-camera code with trigger board and ca.			
140	1.5.4.4	OPC server			
141	1.5.4.5	Interface to PLC			
142	1.5.4.6	Labview program for monitor and control			
143	1.5.4.7	Install working Linux NI platform			
144	1.5.4.8	Hardware configuration of Linux Labview system			
145	1.5.4.9	Interface camera software to NI platform (Plan B)		()	
146	1.5.4.10	Labview program for event handling	1		
147	1.5.4.11	Smart PMT base Labview code			
148	1.5.5	DAQ system bench test	Č	-111	
149	1.5.6	Full DAQ System at D0			
150	1.5.7	Data Archiving			
151	1.6	SITE INFRASTRUCTURE			
			May	June	July

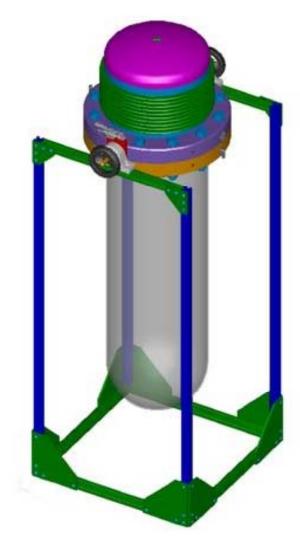
		WBS	Activity Name			2009		
		17		May	June	July	August	September
	171	171	COMMISSIONING Documentation					
8	172 180	1.7.2		•	Happen	ed August 8. Th	iis was a 2 mon	th slip.
1	100	1.7.2.1	Engineering run at D0					•
ŀ	181 182	1.7.2.2	Prototype Inner vessel insertion Piping connections		Reason	s: Delays in finis	ining optics. In	ie lad
	182	1.7.2.3	Instrument waterproofing		shutdov	vn, piping job (te	chs & welders) and
8	184	1.7.2.4	Operational readiness review					
8	185	1.7.2.5	Ready to Operate at D0		enginee	ring support str	etched out due	e to only part
8	186	1.7.2.6	Temporary CF3I Filling System			· · ·		· · ·
8		1.7.2.7	Filling CF3I Happened Set	+ 16	time su	pport. New pip	ing EIN require	ment.
8	188	1.7.2.8	Manual cycling #1					
	189	1.7.2.9	Achieve long superheat times			Наррора	d Oct. 15	
8	190	1.7.2.10	Water filling			Гаррене		
81	191	1.7.2.11	Temperature ramp					
88	192	1.7.2.12	Manual cycling #2					
8	193	1.7.2.13	Automatic cycling, pressure trigger					
8	194	1.7.2.14	Auto cycling, video trigger				ember thru	present
	195	1.7.2.15	Cosmic ray veto		ă			
	196	1.7.2.15.1	Full PMT array test					
8	197	1.7.2.15.2	Integration into DAQ					
	198	1.7.2.16	Test Data taking					
8	199	1.7.2.17	Good data at D0 Will hanne	en this month	December -			
8	200	1.7.3	insert nigh punty vesser		, _ cccino ci			
38 H	201	1.7.4	Relocation to NuMI			and DO -		I I month
SSE	202	1.7.5		er than Feb.	2010 it no 2	2^{11} D0 run _		
ЗH	203	1.7.5.1	Instrument checks		_		ō _ o	
6 H	204	1.7.5.2	Operational readiness review Maybe	e April 2010	with 2 nd D	0 run ——	<u> </u>	
- Cit	205	1.7.5.4					_	<u> </u>
SH	206	1.7.5.4	CF3I filling					
50 H	207	1.7.5.6	Water filling					
зĿ	208	1.7.5.7	Temperature ramp DAQ Test					
88 H	209	1.7.5.8						
÷н	210	1.8	Ready for first physics run MANAGEMENT					<u> </u>
9 H	211	2	COUPP 60 KG M&O NuMI					
8 H	223	3	COUPP-60 KG Deep Site Installation					
8	224	-	COUPP-ou NG Deep Site instanation					
S.	225	4	COUPP-60 KG M&O Deep Site					
8				Мау	June	July	August	September

Now in more detail....

Now I will go into more detail on
I.) the High Purity final Bubble chamber,
2.) Plans with the mechanical prototype BC at DZERO, and
3.) the High Purity Fluid Handling Cart.

High Turity Bubble Chamber STATUS

- The Synthetic quartz Jar is in virgin condition in sealed metal bags.
- The Expansion chamber was cleaned by Astro-Pak and is in sealed metal bag.
- Seals, bolts, hardware all were cleaned at A0 and are in sealed purged bags.
- These parts are in the Lab 3 cleanroom.



Russ Rucinski

12/8/2009

This is the Assembly & Rotation fixture.

Russ Rucinski

High Turity Bubble Chamber

- What's LEFT to complete it?
 - Assembling in the class 10 cleanroom.
 - It has been ready to assemble for months, just hasn't been a priority. Should be a few days work. We will do this very soon.
 - The assembly is the same as mechanical prototype and should go smoothly.
 - PT83 modification, metal seal. Make small tube ass'ys
 - Leak checking. Need 10⁻⁶ mbar-L/sec. We will leave it under vacuum.
 - When fluid handling cart is completed, rinse down internal surfaces with water and then condense BC full with water.
 - Estimated resources is one week of Mark Ruschman's time and some of Rucinski.

COUPP 60 run at DZERO

Mechanical Prototype is currently in operation at DZERO.

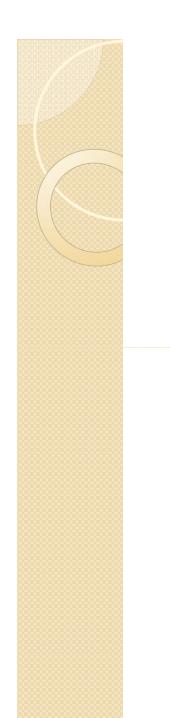
We need to do automated data taking. (I-2 weeks, Eric Dahl)

Would like to do some control system improvements (2 man-days)

Russ Rucinski

12/08/2009

11


COUPP 60 run at DZERO

Russ Rucinski

2/16/2010

COUPP 60 Installation Readiness Review

Mechanical Prototype BC

Bubble Chamber - What's left to do:

When integration run is ended...(estimated Dec. 18)

Remove the Lid & light tight covering.

Remove the PMT raft.

Drain 4000 gallon water tank.

Recapture CF3I from BC.

Transfer glycol hydraulic fluid out of PV.

Remove process & instrumentation connections from lid.

Unbolt the lid.

Put the lid & BC on work stand.

Remove the LED light grid & Diffuser.

The above work would take about 2+ weeks using 2 D0 mech. techs. This puts us into January 2009 for the next step.

No technical challenges here, just work.

Russ Rucinski

Bubble Chamber - What's left to do:

Originally as envisioned in May 2009...

Swap out Mechanical prototype with High Purity BC Re-attach LED grid & diffuser Move lid back onto PV and bolt up for move. Transport all equipment to MINOS (3.5 FTEs about I week effort)

What changed?

LED lighting started failing. Better lighting system developed in 4 kg.
 We want to line inside of the pressure vessel with retro-reflective material.
 Remove camera enclosure, re-vamp with fiber optic light sources.

2. Camera lenses used were not ideal. We need to replace these lenses.

3. Acoustic sensors now a must. The attachment method, decision on number and spacing of sensors present some risk. What spacing is needed? Will sensors interfere with line of sight? Would repositioning of sensors damage quartz?

Bubble Chamber – What's left to do: Starts in January

Proposed 2nd run @ DZero with mechanical prototype...

Change out camera lenses on viewport.

Attach new fiber optic light source to viewport.

Attach reflective lighting sheet inside vessel.

Implement a plan to calibrate image reconstruction.

Attach acoustic sensors to mechanical prototype.

Replace instrumentation feed through as necessary.

Re-attach lid to pressure vessel.

Reconnect lines. {Resource 15 man-days?, A. Sonnenschein+D0 techs }

New Run starts - February 2010?

Refill PV with glycol, condense CF3I into BC. Fill water tank.

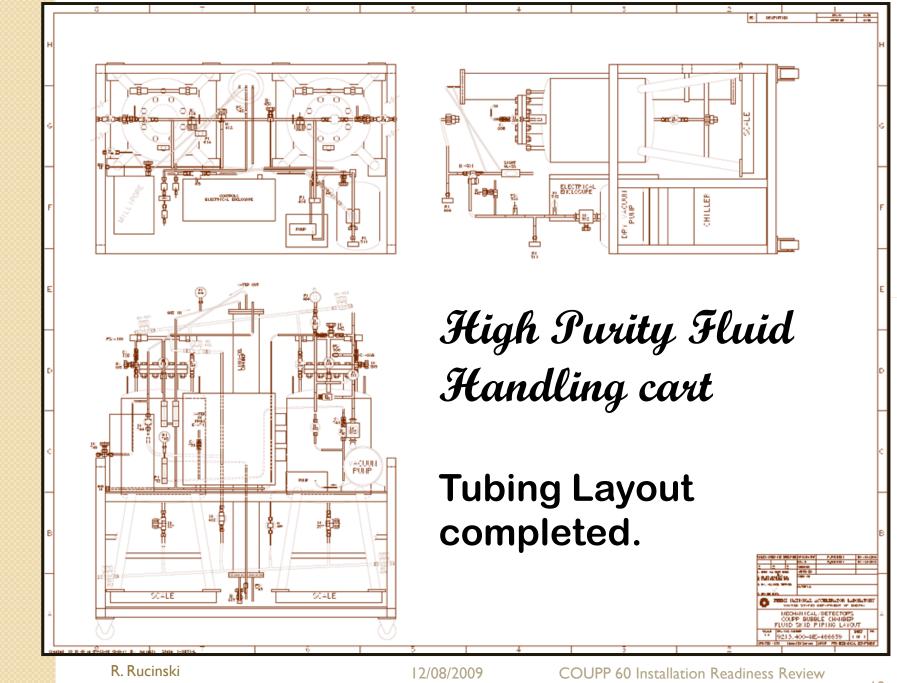
Install PMT raft. Attach lid and make light tight.

Take good data. End run.

Change out with HP BC, move underground – April 2010?

Russ Rucinski

Russ Rucinski


Status – Design done. The Major Pieces are in place, mounted on a cart. Almost all components here. The Flow Diagram and Process Layout finalized. No high purity tubing runs have been welded yet.

Russ Rucinski

12/08/2009

COUPP 60 Installation Readiness Review

- What's left to do:
 - Buy filters, sight glass, bubbler, small stuff.
 - Complete the Technical Specification and performance document. (a draft exists)
 - Documentation
 (Piping EN, Procedures, pORC)
 - Have a peer review.
 - Construction. (in II w/above)
 - Commissioning.
 - Validation.

Resources:

Rucinski + Ruschman, 4 weeks

(Assuming we can get a welder. Realistically we can't get a welder so I can't make any realistic estimate.)

Process Description:

Distilled water is pumped, filtered and de-ionized (nuclear grade resin) as part of the Lab 3 cleanroom water supply. This source is supplied to a Milli Q Element commercial purification system. The water product is then stripped of radon and other gasses by a series of three Liqui-Cel membrane filters. The water with dissolved GN2 is deposited in a 100 liter vessel.

The water can be de-gassed by a dry vacuum pump.

Water can be distilled back and forth between vessels multiple times.

A high purity diaphragm pump with a filter on it's discharge can circulate product back through the radon stripping filters, or back to the vessels, or piping to continuously clean the flow paths and water product.

Some Technical Information

- Project goal # 1: Alpha emitters at less than 10^{-16} g/g of Uranium to reduce alpha induced background rate in the experiment to ~ 1 event /year = $7x10^{-5}$ events/kg-day.
- Project goal # 2: Decay rate less than 1 decay/Liter-day of Radon and less than 0.1 decays/Liter-day of Uranium, Polonium, Radium and Thorium combined.

Source water (Distilled and de-ionized water) expected to have:

10⁵ decays/Liter-day Rn-222

10³ decays/Liter-day of U-238 & Po-210

10² decays/Liter-day Th-232

MilliQ produces water with $< 1.8 \times 10^{-14}$ g/g Uranium & 10^{-13} Thorium per liter.

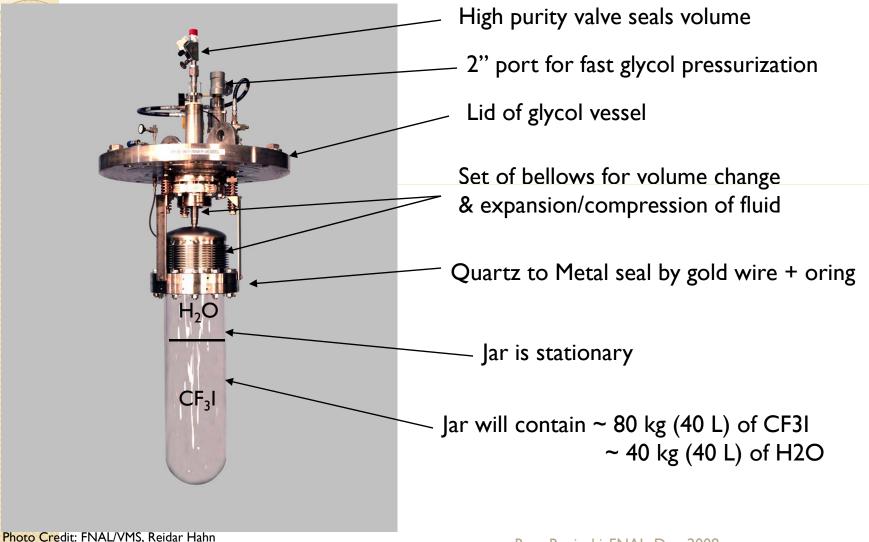
Liqui-Cel radon stripping train will reduce radon by at least 1000 for each pass.

Document #: Projects-doc-793-v1

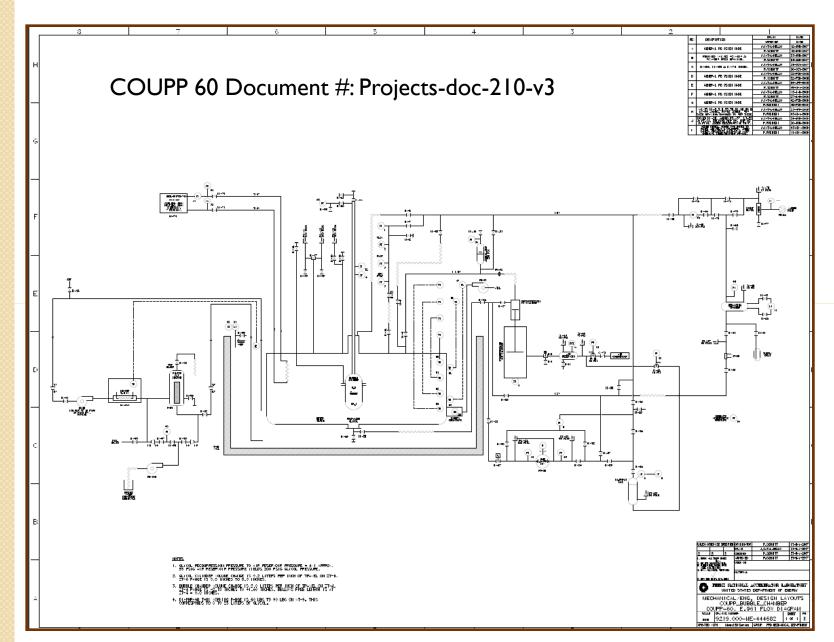
Russ Rucinski

SAFETY READINESS

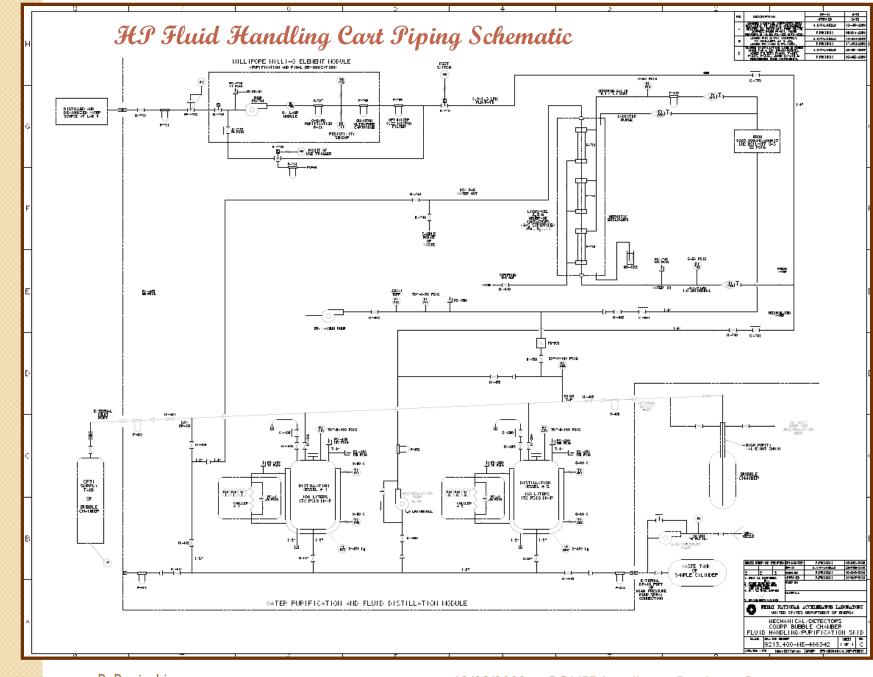
- COUPP 60 at DZERO moving to NUMI
 - Pressure vessel and Piping engineering notes done and approved.
 - Safety Review and Operations document completed.
 - CF3I release analysis (includes ODH) done and easy to adapt to NUMI.
 - pORC for Operations at DZERO, July 30, 2009, is an excellent basis for pORC at NUMI.


<u>SUMMARY</u>

- The High Purity bubble chamber can be assembled and ready (sans acoustic sensors) with about I week of effort.
- A second run at DZERO with the mechanical prototype will reduce some risk associated with the acoustic sensors. It delays the final move to NUMI by roughly 6 weeks, April 2010?
- The fluid handling cart may run into construction delays due to lack of a welder. If that was solved, it will be ready for the NUMI Run.
- The current level of Engineering support is needed for at least a few more months. (0.75 FTE)
- The current level of technician resources (Ruschman, D0 Technicians, Voirin for move) is needed until the experiment is hooked up in NUMI. (2 FTEs)


Supplementary Slides

- Bubble chamber design features
- Flow schematic of COUPP 60 at DZERO
- Draft technical specification for HP fluid handling cart.
- Flow schematic of HP fluid handling cart
- Components list for HP fluid handling cart
- Rucinski's itemized work list for COUPP 60


COUPP - 60 Kg Bubble Chamber, Mechanical Design

Russ Rucinski, FNAL, Dec. 2008

http://projects-docdb.fnal.gov:8080/cgi-bin/RetrieveFile?docid=210&version=3&filename=444682_revK.pdf

HP Fluid Handling Cart – Component list. Work with ME-466342

Sheet I of 2

Type	Num	Description	Manufacturer	Model	Size	Rating	Capacity	Here?
BU	622	Bubbler	none	jar	1/8" FPT	30 psig		No
CV	108	Check valve, high purity, vessel vapor vent	Swagelok	6L-CW4VR4-EP	1/4" male VCR	3000 psig		Yes
CV	208	Check valve, high purity, vessel vapor vent	Swagelok	6L-CW4VR4-EP	1/4" male VCR	3000 psig		Yes
CV	641	Check valve, gas nitrogen back fill line	Swagelok	6L-CW4S4	1/4" compression	3000 psig		Yes
CV	713	Millipore Recirculation valve and pressure limiter	Millipore	Milli-Q Element, ZMQS6VE01	Internal			Yes
C۷	733	Check valve after Millipore module	Swagelok	6L-CW4S4	1/4" compression	3000 psig		Yes
CV	741	Check valve, high purity	Swagelok	6L-CW4VR4-EP	1/4" male VCR	3000 psig		Yes
E۷	703	Millipore internal isolation valve	Millipore	Milli-Q Element, ZMQS6VE01	Internal			Yes
EV	711	Millipore purified water discharge solenoid	Millipore/Oiral	made in Italy, supplied with Milli-Q	1/0" NPT			Yes
E۷	712	Point of use dispenser solenoid	Millipore	Milli-Q Element, ZMQS6VE01	Internal			Yes
F	613	Filter on GN2 sweep gas						No
F	707	Q-Guard purification pack	Millipore	QGARD00R1				Yes
F	708	Quantum Ultrapure cartridge	Millipore	QTUM00ICP				Yes
F	709	Optimizer final filter	Millipore	MPEVICPKJ			0.10 micron	Yes
F	714	Millipak filter on point of use tap	Millipore	MPGL04SK2			0.22 micron	Yes
F	751	Membrane Contactors	Liqui-Cel	2.5 x 8	3/8" Flaretek	105 psig	0.4 - 11 liters/min water	Yes
F	752	Membrane Contactors	Liqui-Cel	2.5 x 8	3/8" Flaretek	105 psig	0.4 - 11 liters/min water	Yes
F	753	Membrane Contactors	Liqui-Cel	2.5 x 8	3/8" Flaretek	105 psig	0.4 - 11 liters/min water	Yes
FI	453	Recirculation polishing filter						No
FI	611	Stripping gas Flow Indicator	Brooks	1510D-NB5-A-1-F	1/4" ENPT	200 psig	3.6 - 36 sofh air	Yes
FI	620	Enclosure purge Flow Indicator	Brooks	1510D-KB3-A-1-D	1/4" ENPT	200 psig	0.08-0.8 sofh air	Yes
FI	732	Water into Liqui-Cel Flow Indicator	Brooks	1510D-PB2-A-1-D	1/4" ENPT	200 psig	10-100 liters/hr	Yes
MV	104	Diaphragm valve, vessel #1top port	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	105	Manual valve, top vent on vessel #1	Swagelok	SS-DSV51	1/4" female VCR	1500 psig	Cv=0.3	Yes
MV	107	Manual valve, bottom drain on vessel #1	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	204	Diaphragm valve, vessel # 2 top port	Swagelok	6L-ELD8-CCXX	1/2" male VCB	240 psig	Cv=2.8	Yes
MV	205	Manual valve, top vent on vessel # 2	Swagelok	SS-DSV51	1/4" female VCR	1500 psig	Cv=0.3	Yes
MV	207	Manual valve, bottom drain on vessel #1	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	401	Manual valve. Gas inlet connection	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	402	Manual valve, Gas outlet connection	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cy=2.8	Yes
MV	411	Manual valve, liquid inlet connection	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	412	Manual valve, liquid oulet connection	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	412	Manual valve, bottom liquid line isolation	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	405	Manual valve,top distillation line isolation	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cy=2.8	Yes
MV	450	Manual valve, recirculation pump inlet	Swagelok	SS-DSV51	1/4" female VCR	1500 psig	Cv=0.3	Yes
MV	501	Manual valve, pump or backfill isolation	Swagelok	6L-ELD8-CCXX	1/2" male VCR	240 psig	Cv=2.8	Yes
MV	502	Vacuum pump manual isolation valve						No
MV	619	GN2 Sweep gas discharge valve						No
MV	642	Manual valve, gas nitrogen purge supply	Swagelok	SS-DSV51	1/4" female VCR	1500 psig	Cv=0.3	2
MV	700	Isolation valve from house water supply	Banjo	UVL1000	1/2" FNPT	100 psig	01-0.0	Yes
MV	740	Water Recirculation block valve to Liqui-Cel train	Swagelok	SS-DSV51	1/4" female VCR	1500 psig	Cv=0.3	Yes
MV	744	Liqui-Cel output control valve	Swagelok	SS-DSV51	1/4" female VCR	1500 psig	Cv=0.3	Yes
MV	749	Valve, sample or purge Liqui-Cel output	Swagelok	SS-DSV51	1/4" female VCR	1500 psig	Cv=0.3	Yes
PCV	455	Pressure control valve, water recirc. Pump	KINF Neuberger, Inc.	Internal	nra nra	22 psig	22 psig relief	Yes
PI	110	Pressure Indicator, vessel #1pressure	Swagelok	PGU-50-PC160-L-4FSF	1/4" female VCR	30"vac-0-160 psig	lower mount	due 12/18
PI	210	Pressure Indicator, vessel # 2 pressure	Swagelok	PGU-50-PC160-L-4FSF	1/4" female VCR	30"vac-0-160 psig	halocarbon filled	due 12/18
PI	404	Pressure Indicator distillation line pressure	Swagelok	PGU-50-PC160-C-4FSF	1/4" female VCR	30"vac-0-160 psig	center back mount	due 12/18
PI	511	Pressure Indicator vacuum pumping line	Swagelok	PGU-50-PC30-C-4FSF	1/4" female VCR	30"vac-0-30 psig	center back mount	due 12/18

HP Fluid Handling Cart – Component list. Work with ME-466342

Sheet 2 of 2

Type	Num	Description	Manufacturer	Model	Size	Rating	Capacity	Here?
PI	110	Pressure Indicator, vessel # 1 pressure	Swagelok	PGU-50-PC160-L-4FSF	1/4" female VCR	30"vac-0-160 psig	lower mount	due 12/18
PI	210	Pressure Indicator, vessel # 2 pressure	Swagelok	PGU-50-PC160-L-4FSF	1/4" female VCR	30"vac-0-160 psig	halocarbon filled	due 12/18
PI	404	Pressure Indicator distillation line pressure	Swagelok	PGU-50-PC160-C-4FSF	1/4" female VCR	30"vac-0-160 psig	center back mount	due 12/18
PI	511	Pressure Indicator vacuum pumping line	Swagelok	PGU-50-PC30-C-4FSF	1/4" female VCR	30"vac-0-30 psig	center back mount	due 12/18
PI	512	Pressure thermocouple gauge, vacuum line	Hastings	DV6R				Yes
PI	614	Pressure gage for Stripping Gas In	Noshok	25-400-60-02	1/4" MNPT	0-60 psig	dry, no liquid fill	Yes
PI	742	Pressure Indicator Gauge, water into Liqui-Cel	Noshok	25-500-60-HALOCARB-O2	1/4" MNPT	0-60 psig	halocarbon filled	Yes
PSV	100	Pressure safety relief valve, vessel # 1	Circle Seal Controls	M5180T1-4M(L)-150	1/2" MNPT	150 psig	ASME	Yes
PSV	120	Pressure safety relief valve, vessel # 1	Circle Seal Controls	M5180T1-4M(L)-150	1/2" MNPT	150 psig	ASME	Yes
PSV	200	Pressure safety relief valve, vessel # 2	Circle Seal Controls	M5180T1-4M(L)-150	1/2" MNPT	150 psig	ASME	Yes
PSV	220	Pressure safety relief valve, vessel # 2	Circle Seal Controls	M5180T1-4M(L)-150	1/2" MNPT	150 psig	ASME	Yes
PSV	500	Pressure safety relief valve, vacuum line	Circle Seal Controls	K520T1-2M-15	1/4" MNPT	15 psig SP	1.5 sofm air or 0.5 gpm	Yes
PSV	705	Millipore internal relief valve	Millipore	Milli-Q Element, ZMQS6VE01	Internal	11 psig		Yes
PSV	743	Pressure safety relief valve, water to Liqui-Cel	Circle Seal Controls	K520T1-2M-100	1/4" MNPT	100 psig SP		
PU	451	High purity Recirculation Pump	KNF Neuberger, Inc.	UNF 100TTE 115v/60 Hz	1/8" FNPT	15 psig	0.75 - 1.2 lpm water	Yes
PU	704	Millipore internal pump	Millipore	Milli-Q Element, ZMQS6VE01	Internal	34 psig	0.9 - 1.3 lpm water	Yes
RE	711	Millipore resistivity sensor	Millipore	Milli-Q Element, ZMQS6VE01	Internal	nła	2.4 - 18.2 Mohm/cm	Yes
TE	710	Millipore internal Water temperature	Millipore	Milli-Q Element, ZMQS6VE01	Internal	nła	0 - 45 Celcius	Yes
TI	1	Chiller #1 fluid supply Temperature Indicator	PolyScience	5360T11A110C	Internal	nła	-10 C to 70 Celcius	
TI	2	Chiller #2 fluid supply Temperature Indicator	PolyScience	5360T11A110C	Internal	nła	-10 C to 70 Celcius	
TI	101	Temperature Indicator, Vessel # 1 jacket inlet	Omega	SA2C-RTD-3-100-B-80	flat	100 ohm Pt	-200 C to 850 Celcius	Yes
TI	102	Temperature Indicator, Vessel #1jacket outlet	Omega	SA2C-RTD-3-100-B-80	flat	100 ohm Pt	-200 C to 850 Celcius	Yes
TI	201	Temperature Indicator, Vessel # 2 jacket inlet	Omega	SA2C-RTD-3-100-B-80	flat	100 ohm Pt	-200 C to 850 Celcius	Yes
TI	202	Temperature Indicator, Vessel # 2 jacket outlet	Omega	SA2C-RTD-3-100-B-80	flat	100 ohm Pt	-200 C to 850 Celcius	Yes
UL	706	Dual wavelength UV Lamp module	Millipore	ZFA10UV01 Lamp, ZMQUVLP01 unit				Yes
VT	103	Weight / Force	Industrial Comm. Scale	ICS 2424-500	24" x 24" platform	1000 lbs	0 - 450 kg, 0.1 kg res.	Yes
WT	203	Weight / Force	Industrial Comm. Scale	ICS 2424-500	24" x 24" platform	1000 lbs	0 - 450 kg, 0.1 kg res.	Yes
		Chiller # 1, Refrigerating and Heating recirculator	PolyScience	5360T11A110C	1/2" NPT	45 psig	-10 C to 70 C, 3 - 3.5 gpm	Yes
		Chiller # 2, Refrigerating and Heating recirculator	PolyScience	5360T11A110C	1/2" NPT	45 psig	-10 C to 70 C, 3 - 3.5 gpm	Yes

DRAFT - TECHNICAL AND PERFORMANCE SPECIFICATION

WBS 1.2 HIGH PURITY FLUID HANDLING

WBS 1.2.1 Documentation WBS 1.2.1.1 Specification

Water quality:

Alpha emitters at less than 10^{-16} g/g of Uranium to reduce alpha induced background rate in the experiment to ~ 1 event /year = 7x10⁻⁵ events/kg-day. Decay rate less than 1 decay/Liter-day of Radon and less than 0.1 decays/Liter-day of Uranium, Polonium, Radium and Thorium combined. Maximum foreign particulate size: 15 microns Maximum mass of foreign particulates: ? Grams

Water volume and flow rate:

Water production rate: Produce a net of 45 liters of radio-pure water for transfer into the bubble chamber within one eight hour shift.

The system must be capable of holding 100 liters of radio-pure water that can be dispensed at a rate of 25 lpm for rinsing operations.

Distillation rate – Distill a quantity of 50 liters of water from one distillation vessel to the other over the course of two eight hour days or less.

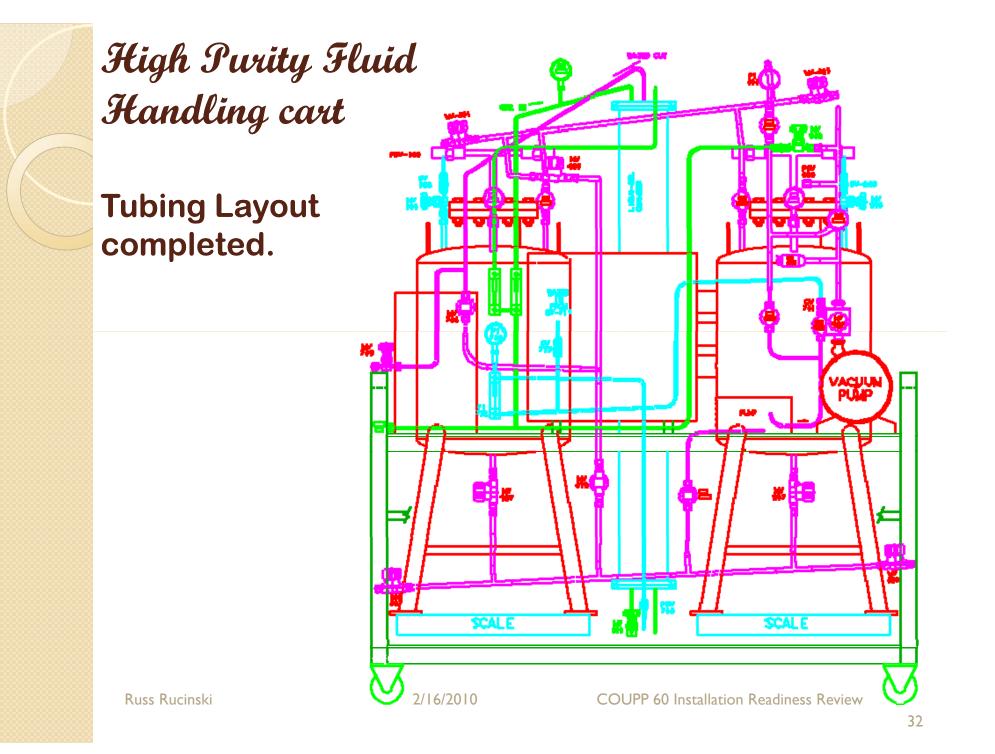
Dispense by distillation at a 40 C, 45 liters of water from a distillation vessel into the COUPP bubble chamber over the course of two eight hour days or less.

DRAFT - TECHNICAL AND PERFORMANCE SPECIFICATION

WBS 1.2 HIGH PURITY FLUID HANDLING

WBS 1.2.1 Documentation WBS 1.2.1.1 Specification

CF3I volume and flow rate:


Distillation rate: Distill a quantity of 50 liters of CF3I from an external supply into a distillation vessel over the course of two eight hour days or less.

Distill a quantity of 50 liters of CF3I from one distillation vessel to the other over the course of two eight hour days or less.

Dispense by distillation at a 40 C, 45 liters of CF3I from a distillation vessel into the COUPP bubble chamber over the course of two eight hour days or less.

Reference Documentation

•COUPP Water System description, Andrew Sonnenschein, Oct. 10, 2007
(Andrew, I didn't see this document in the docDB.)
•Projects Document 754-v1
<u>Sandia Lab Ultra High Piping specification</u>, <u>Standard SEMI E49-1104 Semiconductor UHP piping guide</u>, <u>Swagelok UHP specification</u>
•Projects Document 515-v1
Cleaning Specifications for COUPP Expansion Chamber and High Purity Tanks at Astropak
•Projects Document 516-v1
Cleaning and Clean Room Standards and Procedures

R. Rucinski's current work list for COUPP 60

COUPP WC	JRK LIST:
Low rad Wate	r system
	Order DI water conductivity meter for checking rinsing tube outflow
	Motivate technician progress on HP tubing work
	Order filters, sight glass, MV-502 KF25 vacuum valve, KF25 x 0.5 od tube
	Contact APC, why isn't jacket rated for full vacuum?
	Order heat tape for distillation tubing line
	Non permeable Seal solution for top flange, energized spring in teflon?
	Plan side panels/keep it clean order slot covers
	Finish design document with technical specification
	Organize a peer review
DZero Integra	
	Confined space entry Davit system solution for NUMI
	Order scale for crane
	Get control system laudry list of items fixed
	Order a replacement hydraulic pump
	Call 312-226-1506, Charlie Voss x3110 or Dennis Comia x3116 when PSV's are ready
	for re-building with stainless steel wire and body plug. Allied Valve
	Test the water weekly and add chemicals as needed (delegated to PGS)
	Make sketches for techs of optical calibration
High Purity ch	
	Test assembly HP expansion chamber to jar after astro-pak cleaning?
	PT-83 replacement for underwater, attachment detail
	Sketch up tight elbows & tubing to mount PT-83 & MV-80, MV-81
	Check flatness of synthetic quartz jar flange prior to bolt up
	Eliminate spring to eliminate motion during recompression
Documentatio	
Documentatio	Finish Design Engineering note, into DocDB
Coordination	
	Water conditioning, get Pushka to get a solution
	DAQ system required for integration run - Get filled w/CF3I to force issue

Underground	siting
	SNOLAB, follow up on Water tank and Crane procurement
	Trip to SNOLAB in January?
	Design feet/frame to raise vessel up in water tank
Other	
	Assay method for radiopurity, testing of Fluid handling performance
	Larger volume bubble chamber, the next phase of COUPP