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Distributions from Composite Run 6446 at (+38, -38)
11450 Total Events

S+ mean 439.2

D+b mean 224.8

D-b mean 185.9
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What R&D have we done?

Hamamatsu H75468B Relative Response
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What R&D are we doing?

From slide (2) we see there are no zeros in any of the
histograms.

With 11,500 events and no zeros we conclude P(0) = exp{-a} is
less than 1/11,450 = 8.3 E-O5 => a=-In(8.3 E-05) =9.3

No. of photo-electronsis > 9.3 (Sept 2006)

Enter SiPMs from IRST (INFN Trento) via
Giovanni Pauletta INFN Udine first Mtest SiPM data
Seminar by Claudio Piemonte from IRST Oct 2006
(other devices tested by Adam Para before this)



Preliminary study  Scint. Strip viewed by IRST SiPM
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B . Geiger-mode APD

Diode biased at V, > Vg,

t<t,........ i=0 (if no free carriers _ i=i
. . . | ¢ MAX

in the depletion region)

t=t,.......... carrier initiates the avalanche

t, <t <t,....avalanche spreading

t>t, ........self-sustaining current (limited
by series resistances)

" t

To detect another photon a quenching mechanism is needed!

I 3

X
Veias Two solutions:

mm) - large resistance:
Vs passive quenching
* analog circuit:

active quenching

h
Claudio Piemonte Siena, IPRD06 October 15t 2006



r Operation principle of a GM-APD

Passive quenching studied in detail in the '60 to model
micro-plasma instabilities Mclntrye JAP 32 (1961), Haitz JAP 35 (1964)

The Geiger-Mode APD can be modeled with an electrical circuit
and two probabilities:

¢ Switch OFF = micro-plasma non-conducting
* Switch ON = micro-plasma conducting

. | Veias
«C,diode capacitance (some 10fF) T

» R_series resistance (~1KQ)
. Rq quenching resistance (> 300KQ)
oV,, <V, __(few % relative)

. P'01 turn-ON

Probaility that a carrier traversing
the high field region trigger an avalanche

Vv
e P, turn-OFF L B

Probaility that number of carriers
in the high field region fluctuates to 0

Gianmaria Collazuol - Scuola Nazionale Legnaro 26-30 Marzo

Internalf/external currents
8



B0 GAIN in GM-APD

1 ~(Veias-Vep)/ Rcz

i
The first part of the signal
is much faster than trailing

~exp(-t/Rg*Cq)
H &
exp(-t/Ry"Cq) edge

t
- charge collected per event is the area of the exponential
decay which is determined by circuital elements and bias.

mm) |t is possible to define a GAIN

Gain = lyax"tq = (Veias~Ven)'Tq = (VeiasVen)"Co
q Ro ¢ o

This property is exploited in a Silicon photomultiplier....

Claudio Piemonte FNAL October 25t 2006



Si APD R&D

MPPC 1mm x 1mm active area
w/100, 400 or 1600 pixels
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Hamamatsu MPPC Paul Rubinov
100 pixels 100u X 100un

5mv/pe at nominal
bias voltage for
a 100 pixel device

HV=70.0, LED on, 66ns gate
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INFN/IRST C. Piemonte st
6. Pauletta INFN/Udine

June 13, 2007, Perugia

2X2mn
50%50 un

IxImm  2x2mm 3x3mm (3600 cells) Ax4mm (6400 cells)

Increased fill factor:
40ux40p  =>44%
S0uxs50p  =>50%
100ux100u => 76%;

Circular Array
(1.2 mm —
diameter)




Strip-scint/Si-APD Tests at Notre Dame

Two strips w/ WLS fiber, HPK
MPPC, plastic holder assembly
+ front-end card &connectors



First signal and noise characteristics of the last devices

Noise and charge resolution

1x1mm? SiPM with 40x40um? cells Charge spectra at different
Voltages with the same light
T=5C m Intensity (pulsed)
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C. Piemonte: June 13", 2007, Perugia




‘ Temperature Behavior of Hamamatsu MPPC's .

e Average gain of three 100 um, 100 pixel
devices @ 20 deg. C is found to be 2.52 x 10° R. Van Kooten &

- - o . P.Smi .
e Variation of various properties with temperature: Smith  Ind. U
Ham100U 19 - Background Rate with Temperature
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MTest 2008

Beam from Nov10 to 16

Minerva test of TOF counters

Added one bar with SiPM for
testing (Ham, IRST)

Using NIM based 6¢ch amp built
at Fermilab for this work

Using optical coupling designed
at Notre Dame

Using 120 GeV proton beam
(1in x 1in spot)

Very preliminary results below

11/17/2008 P Rubinov LCWSO08
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Very preliminary results

Emntries

 Here are typical plots . ¢ Mean

Rhds
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Very preliminary results

e |t seems at least

plausible that we
can pull out the 1pe

peak from the
pedestal

(due to dark counts)

e This makes the
detector self
calibrating

11/17/2008

P Rubinov
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Very preliminary results

« A scan of the 1.8m bar across the beam gives an
estimate of the attenuation length

Att meas for SE180SET
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att length estimate:
o5 L 330cm+-50cm
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Why should this R&D be supported?

SiPMs deployment could save significant money. Why?

SiPMs work in B fields greater than 5 Tesla, so we don't need
clear fiber to get optical signals out of the B field.

If the photo-electron yield is ~25 for our strips then longer
strips can be used and single ended readout may be possible
thereby reducing the channel count.

If our idea of using the noise pulses for calibration works then
we don't need a light pulser system and all the attendant
instrumentation, which would be an additional cost saving.

We expect the cable for handling the raw electronics signals and
then digital signals would take up less space than the fiber
needed to get out of the detector; another cost and space
saving.

SiPMs are a new technology that physicists here and elsewhere
are interested in developing. This is not simply ILC!



Current Status

Fermilab - Cost estimate; Fast digitizers w/firmware; MTest
measurements with Rubinov digitizers.

Indiana U.- Will measure more SiPMs to understand AG/ATemp.
They will pursue on-circuit femperature monitoring and AG/A
corrections offline and online; with Wayne State. Both will
probably want Rubinov fast digitizers.

Notre Dame - Additional strips ur to 6m for measurin
attenuation of light pulses at distances greater than 3m.
Testing more SiPMs. UND has an HPK PS/amplifier for such
testing.

NIU - Continuing analysis and tests with CALICE at MTest; Jet
energy resolution improvements with tail-catching.

Wayne State - FE electronics; SiPM characterics; AG/ATemp

INFN/Udine - IRST SiPM MTest beam measurements; Noise
measurements, single photo-electron peak studies; signal
analysis with Rubinov tast digitizer.

Universities have submitted an LCRD proposal for the funding of
further SiPM studies.



Plans for Next Five Years

Order additional SiPMs and characterize them. Noise
characteristics. Achieve gain independence from Temp.

Test with fast digitizer boards to understand calibration
with photo-peaks. Can noise pulses be used to calibrate?

Test long strips with MTest beam. # of p.e.s vs.
longitudinal position of the beam.

Understand signal pulse shaping and develop optimal pulse
shape network.

With help from SiPM vendors determine future costs of
SiPMs.

Develop plan for determining full muon electronics chain.
Refine cost estimate and assumptions.



Personnel and Funding Needs

Read Ferminews everyday.

"For us, passage of the American Recovery and Reinvestment
Act was the big news of the week, the year and--barring
discovery of the Higgs--the decade. It makes a large
investment in science and technology... Our first priority now
is to do our part to support economic recovery by spending
these funds wisely, productively and rapidly, as contemplated
by the legislation.“ Pier Oddone Ferminews 2/17/2009

We need Rubinov and Fitzpatrick's Fast Digitizer
and help from the Universities.

We will need MTest beam.
Before that we will need an MOU.



Summary of Strip Scintillator/SiPM Studies

= Minimum ionizing particles seem to provide adequate
num.]tcz.er('js of phofo-electrons, but this must be furter
verifie

= We are learning how to test and calibrate SiPMs with
and without beam, but instrumentation development is
necessary for further proof of methods.

+ There are many issues: pixel size for muons and
hadronic shower measurements; pulse shaping,
ampIification, digitization; temp dependence, after
pulsing, signal collection and readout, .....

+ SiPMs look very promising, but a long way to go.

Thanks for your help!!

24



Current, nA

Output Current for Different MAPMT S+ Channels
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S. Dychkant - N.I.U.




Boxed MAPMT with Interface
and WLS Fibers Connected

- Labeled WLS fiber is a
reference always positioned
At channel number 57 in each
MAPMT.

Control measurements were
performed using the second
fiber by repeating the

! measurement in channel
humber 64.

S. Dychkant - N.I.U.



Normalized
Responses

Relative Response
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Q(pC)/ Q_Sum(pC)

Readout From One End (dot lines)
From Both Ends (solid lines)
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