Development of Vertically Integrated Circuits for Particle Detectors

M. Trimpl

On behalf of the Fermilab Pixel Group:
G. Deptuch, M. Demarteau, J. Hoff, R. Lipton, A. Shenai, R. Yarema, T. Zimmerman

Outline
- Motivation / Advantages of 3D
- Fermilab’s activities towards 3D integration
- MIT-LL run(s) and current MPW with Tezzaron
- FNAL 3D-IC Designs: VIPIC, VICTR, VIP2b
- Summary
global 3D activities - very hot topic right now
3D device is a vertical integration of multi layers (of semiconductor) to **one ‘monolithic’ unit.** This includes thinning, bonding and interconnecting these layers.

Industry has various fields of interest:
- overcome Moore’s law,
- memory on processor (multi cores),
- stacked memory,
- cell phones cameras

I will not talk about this!
why is 3D interesting for us?

- 3D is not only a more dense design (\# transistors per mm\(^2\))
- it also offers some interesting opportunities for detector design / assembly

3D Example: 3 Tier Vertically Integrated
256 x 256 Pixel Array:

→ Fermilab started exploring 3D technologies 2006

conventional assembly:
Process Flow for Tezzaron 3D Chip

- two tier assembly (additional tiers can be added)
- vias formed just after transistor fabrication (via first), M1 not blocked
- uses Chartered bulk CMOS high volume production process

1) Complete transistor fabrication, form, passivate and fill super via

2) Complete BEOL processing

3) Flip 2nd wafer on top of first wafer

 Bond 2nd wafer to 1st wafer using Cu-Cu thermo-compression bond

4) Thin 2nd wafer to 12 um to expose super Contact.

 Add metalization to back of 2nd wafer for bump or wire bond.
bonding processes for VI

- 3D bonding technology to replace bump bonds in hybrid pixel assemblies.

- Bonding options being explored by Fermilab:
 - CuSn eutectic with RTI
 - Direct Bond Interconnect (DBI) with Ziptronix. 3 um pitch, wafer to wafer and chip on wafer, relies on oxide bond
 - Cu-Cu fusion with Tezzaron

- Excellent strength and yield obtained with 7 um CuSn pillar on a 20 um pitch. However, 10 um of CuSn covering 75% of bond area would represents Xo=0.075. Too high for some HEP applications.

- CuCu fusion and DBI offer the lowest mass bond required by many HEP experiments.
Fermilab's start in 3D-IC: VIP with MIT-LL

- readout between bunch trains
- high speed data sparsification (token passing)
- analog output after CDS
- digital and analog time stamping options: 5-10 bit design (resolution 3-100 BX)
- Test input for every pixel
- 4096 pixel array with 20um pixels,
- scalable to 1 MPix

MIT process: 3 tier, via last, FD SOI

Demonstrator chips for ILC vertex pixels (driven by ILC specs), submitted 2006
VIP1 and VIP2a with MIT-LL

- VIP1 designed in 3 tier MIT-LL 0.18 um SOI process
- no sensor layer utilized

VIP1 Test Result

VIP1 found to be functional.
- VIP1 Yield was low.
- VIP2a designed to improve yield:
 - increased sizes in FD SOI
 - improved power distribution
 - wider traces
 - at expense of larger, 30 um, pixel size
- VIP2a is in fabrication
- Focus has shifted from SOI to CMOS processes
Consortium formed for 3D Design

- Organized by Fermilab (late 2008)

Benefits
- Sharing of designs (e.g. ASD from LBNL and DACs from CPPM used in VICTR)
- Development of special software tools
- Development of libraries
- Design reviews
- Sharing of results
- Frequent meetings
- Cost reduction

- First MPW run with Tezzaron closed
- contributions from Fermilab: VIPIC, VICTR, VIP2b (6.3 x 5.5 mm chip size)

- Currently 15 members (others joining)
 - Fermilab, Batavia USA
 - University at Bergamo Italy
 - University at Pavia
 - University at Perugia
 - INFN Bologna
 - INFN at Pisa
 - INFN at Rome
 - CPPM, Marseilles France
 - IPHC, Strasbourg
 - IRFU Saclay
 - LAL, Orsay
 - LPNHE, Paris
 - CMP, Grenoble
 - University of Bonn Germany
 - AGH University of Science & Technology Poland

SDS 2009, Wildbad Kreuth, 10.06.2009 - 9 - Marcel Trimpl, Fermilab
First Tezzaron MPW Run

- Wafers fabricated in **Chartered 0.13 um CMOS process**
- Frame divided into 12 subreticules among consortium members
 - Identical wafers **bonded face to face** by Tezzaron.
 - Backside metallization by Tezzaron.
- More than 25 separate designs (circuits and test devices)
 - sLHC: CMS strips, ATLAS pixels
 - ILC pixels
 - B-factory pixels
 - X-ray imaging
 - Test circuits
 - Radiation damage, SEU tolerance
 - Cryogenic-T operation
 - Via and bonding reliability and yield

Wafer Map

Max frame layout area including internal saw streets: x=25.760 mm y= 30.260 mm.
XPCS project (VIPIC chip)

X-ray Photon Correlation Spectroscopy (XPCS):

- based on generating speckle pattern by scattering of coherent X-rays from a material where spatial inhomogeneities are present
- studies dynamics of materials (e.g. diffusion constants, phase transformations, domain relaxation times)

Project with BNL (P. Siddons) for NSLS II
VIPIC overview

16 Serial Output Lines (LVDS)

Analog Pixel Tier

- Preamp X6
- Disc.
- ts=250 ns
- Feedback
- Two 5 bit counters
- Program latches
- Sparsification
- Serializer and LVDS Output

Digital Pixel Tier

>1200 transistors

1 of 16 Serial Output Lines

VIPIC designed together with AGH UST: P. Grybos, R. Szczygiel
VIPIC (Vertically Integrated Photon Imaging Chip)

- **Specifications**
 - 64 x 64 array of 80 micron pixels
 - Dead timeless, triggerless operation
 - Sparsified data readout
 - Binary readout (no energy information)
 - High speed frame readout time
 (10 us. min, occupancy 100 photons/cm2/usec)
 - Optimized for photon energy of 8keV

- **Features (5.5 x 6.3 mm die size)**
 - Two 5 bits counters/pixel for dead timeless recording of multiple hits per time slice (imaging mode)
 - Address generated by circuit using binary tree architecture <5ns
 - Parallel serial output lines
 - 16 serial high speed LVDS output lines
 - Each serial line takes care of 256 pixels
 - 2 tiers, separate analog and digital sections
 - Adaptable to 4 side buttable X-ray detector arrays
VIPIC mounting

top view - 4 side buttable assembly

vs. conventional setup:

dead areas

⇒ large sensor area with uniform power distribution
Backside bump bonding for VIPIC

Digital Tier Layout with pads for detector fanout and backside bump bonding
increase of luminosity in sLHC to the planned 10^{35} cm$^{-2}$s$^{-1}$ requires **L1 trigger** in tracking layers to reduce data 100-200x:
- identify hits associated with pt above 2 GeV for data transfer
- identify high pt tracks with pt above 15-25 GeV
- provide good Z vertex resolution of about 1mm for tracks above 2 GeV

- **pair of sensor planes** with about 1mm separation and VICTR (**Vertically Integrated CMS Tracker**) chip
 - Locally collect hits from both sensors
 - Finds hit pairs with pt>2GeV
 - Transfers data to vector forming circuit

- **Vector forming circuit**
 - Locally collect hit pairs >2GeV from two barrels of detector modules
 - Form track vectors for identification of high pt tracks
 - Rejects track vectors with low pt to further reduce data rate before transferring data off the detector
VIP2b

• sensors unders separate fabrication
 thick sensors: collaboration with BNL,
 thin sensors: planned run with XFAB
• Based on VIP1 and 2a with changes:
 - Converted 3 tier design to 2 tiers
 - Removed analog time stamping
 - Increased digital time stamp
 from 5 bits to 8 bits for ~3.9 us resolution
 - Switch for collection of h+ or e-
 - Larger array 192 x 192
 - Pixel size increased to 24 um to accommodate
 extended digital time stamp and maintain
 sampling of analog data on MiM capacitors.
• Expect better yield from commercial CMOS process
• Expect better radiation tolerance (compared to SOI)
• (VIP2b designed in 2 tier Tezzaron/Chartered
 0.13 um bulk CMOS process)
Two different processes for replacement of conventional solder bump bonds demonstrated. The lower cost *CuSn technology (RTI)* was shown to work at a pitch of 20 um and has better yield and strength than PbSn. *DBI (Ziptronix)* is a higher cost process but has much lower mass and pitch (3 um), and has greater strength for post bond thinning.

- Fermilab has been working with two different vendors for 3D chip fabrication. *MIT LL (SOI process)* and *Tezzaron (CMOS process)* with Cu-Cu bonding.
- International consortium of 15 HEP institutions to develop 3D chips formed. The first MPW run to Tezzaron is closed and ready for fabrication.
- Designs from Fermilab for ILC pixels, CMS strips, and X-ray imaging were described showing the range of opportunities for 3D circuits in instrumentation.
DBI® Process Flow

1) **Starting Wafer**
 - Planar Surface
 - Exposed Filled Vias (W or Cu)

2) **Deposit Seed**

3) **Pattern / Plate DBI® Metal (Ni)**

4) **Blanket Etch Seed**

5) **Oxide Deposition**
 - Oxide Bonding Mechanical Spec < 0.5nm

6) **Planarization**
3D Interconnect Characteristics

<table>
<thead>
<tr>
<th></th>
<th>SuperVia™</th>
<th>SuperContact™</th>
<th>SuperContact™</th>
<th>Bond Points</th>
<th>Chip to Wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Via First, BEOL</td>
<td>200mm Via First, FEOL</td>
<td>300mm Via First, FEOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>4.0 μ X 4.0 μ X 12.0μ Cu</td>
<td>1.2 μ X 1.2 μ X 6.0μ W</td>
<td>1.6 μ X 1.6 μ X 10.0μ W</td>
<td>1.7 μ X 1.7 μ Cu</td>
<td>10 μ X 10 μ Cu</td>
</tr>
<tr>
<td>Minimum Pitch</td>
<td>6.08 μ</td>
<td><2.5 μ</td>
<td><3.2 μ</td>
<td>2.4 μ</td>
<td>25 μ</td>
</tr>
<tr>
<td>Feedthrough Capacitance</td>
<td>7fF</td>
<td>2-3fF</td>
<td>6fF</td>
<td><<</td>
<td><25fF</td>
</tr>
<tr>
<td>Series Resistance</td>
<td><0.25 Ω</td>
<td><0.6 Ω</td>
<td><1.5 Ω</td>
<td><</td>
<td><</td>
</tr>
</tbody>
</table>
Process Flow for MIT LL 3D Chip

- 3 tier chip (tier 1 may be CMOS)
- Vias formed after FEOL and BEOL processing is completed

1) - fabricate individual wafers

2) Invert, align, and bond wafer 2 to wafer 1

3) Remove handle silicon from wafer 2, etch 3D Vias, deposit and CMP tungsten

4) Invert, align and bond wafer 3 to wafer 2/1 assembly, remove wafer 3 handle wafer, form 3D vias from tier 2 to tier 3

SDS 2009, Wildbad Kreuth, 10.06.2009

Marcel Trimpl, Fermilab
Examples of problems in FDSOI:

- MIRROR C3R3
- MIRROR C5R3

Built-up mechanical stress – similar to strained Si

Built-up of charges (mobile) due to ions flow

Examples of problems in FDSOI:

Poor quality of transistor bulk contacts, even using so-called H-gate transistors; due to charge accumulation in oxide bulk is floating.

Self heating of transistors due to poor heat transfer and varying power dissipated on both sides of current mirrors.

B M Tenbroek, et al., Drain current mismatch in SOI CMOS current mirrors and D/A converters due to localised internal and coupled heating.