Details of the First 3D-IC Multi-Project Wafer Run

OUTLINE:
1) involvement in 3D projects at Fermilab
2) 3D-IC consortium run
3) verification including 3D LVS
4) next steps
5) summary but no conclusions

G. Deptuch, M. Demarteau, J. Hoff, R. Lipton, R. Patti¹, A. Shenai, M. Trimpl, R. Yarema, T. Zimmerman

¹ Tezzaron Semiconductor
Involvement in 3D projects at Fermilab

Two generations of Vertically Integrated Pixel (VIP1 & VIP2A) chips with features for ILC detector vertex:

1) run 3DM2;
to fab Oct. 2006 -> back Nov. 2007
2) and 3DM3;
to fab Oct. 2008 -> back Aug. 2010

Features:

- VIA-LAST process (vias after bonding and thinning) – excludes area for local interconnect in TSV locations;
- 3 tiers (wafers) 180/150nm FDSOI process with 3 regular metals and 2 tiers with back-metal
- SOI feature natural oxides = etch stops and bonding surfaces
- potential use of heterogeneous wafers
Involvement in 3D projects at Fermilab

VIP2A

Tier C
“analog”

Tier B
“time stamp”

Tier A
“sparsify”

VIP = vertically integrated pixel – ILC type

Design from MIT-LL migrated to Tezz./Chartered

VIP1 found to be functional. Architecture proven but: VIP1 yield was low. VIP2A s submitted including adaptations to analog design in FDSOI and played safe face to laboratory scale process Focus has shifted from working in FD SOI to bulk CMOS processes

Data readout out using data sparsification scheme.

Decreasing threshold
Involvement in 3D projects at Fermilab

VIP2A tests are showing that 3D-IC technology works

Single pixel test structure

VIP2a - noise after CDS

Noise as a function of sampling interval for Cin=20fF.

Pixel-pixel discriminator threshold dispersions 300μV

Full acquisition with sparsified readout !!!
3D-IC consortium run

Migrated VIP2A->VIP2B design + 2 other designs from Fermilab and 9 other subreticles from 3D-IC consortium institutions submitted on a Fermi MPW 1) to fab May/June 2009 -> back not yet

Features:

- 8” wafers, large ~26x31 mm² reticule,
- 1P/6M (8M) + RDL, DNW, SM MIM Caps, LP (chosen), standard VT + low VT, + Zero Vt + IO MOSFETs, HR poly resistors, embedded TSVs
- Tungsten TSVs are part of the FEOL, φ=1.3 μm, 3.8 μm rec. spacing and 6 μm depth,
- 6th metal used as a bond interface for face-face Cu-Cu thermo-compression bonding

0.13 μm bulk CMOS by Chartered with Tezzaron 3D via-first technology
Economical solution employed on the 3D-IC run

Alternative would be to fabricate two sets of wafers from two sets of masks if there were enough customers
3D-IC consortium run

Test chips: TX, TY
2.0 x 6.3 mm

Subreticules:
A, B, C, D, E,
F, G, H, I, J
5.5 x 6.3 mm

– Run organization:
 • Consortium established by Fermilab in late 2008, now 17 members; 6 countries (USA, Italy, France, Germany, Poland, Canada)
 • first designers’ meeting: Dec. 2008, then Feb., Mar., and May 2009
 • Initial designs for MPW run completed in May 2009; 2 tier 3D chip, single mask set face-to-face bonding; Chartered 130 nm CMOS
 • Numerous problems were encountered with designs, software tools at Tezzaron, shifting Chartered requirements, etc.
 • MPW frame accepted by Chartered in March 2010, Waiting for chips – Oct./Nov. 2010
 • Delay appears related to Global/Chartered decision to move some equipment from prototype line, where 3D wafers are done, to the production line due to increase production demands
3D-IC consortium run

- **Depth of 3D-IC exploration:**
 - ideas for bonding fabricated chips to detectors were present from the beginning of chip design
 - complexity of envisaged solutions was growing – from simple bonding appetite has grown to full double side connectivity

- **Physical and functional verification**
 - continuous checking of designs by Fermilab and Tezzaron → identified numerous problems:
 - layer map tables, bond interfaces, mirroring of designs in frame,
 - different DRC violations found with Assura, Calibre, and Magma
 - problems with CAD software MicroMagic, Calibre and Magma
 - newer DRC versions uploaded

- **Fabrication schedule**
 - order is for 31 wafers for all users
 - 8 weeks for wafer fabrication.
 - 4 weeks for 3D assembly
 - 5 wafers for DBI try-out from Fermilab

Division of the frame into 12 subreticule pairs: left-right.

- **Fermilab designs:**
 - H = VICTR; short pixel realizing p_t cut for L1 trigger embedded in tracker for CMS @ SLHC
 - I = VIP2b; time stamping pixel for vertex detector @ ILC
 - J = VIPIC; very high frame rate with sparsification pixel for Xray Photon Correlation Spectroscopy @ light source
 - TX, TY test structures (single transistors and subcircuits)

Initial schedule turned out not realistic
Verification including 3D LVS

Fig. 1: Basic LVS Flow Using Calibre or Assura

flow for 2D-IC

Fig. 2: 3D LVS Flow Using Calibre or Assura

flow for 3D-IC
Verification including 3D LVS

NCSU Software

3D design contains two tiers

Tier 0

Top Level Cell streams out
Tier0.gds

gdsII contains original gds
number & layer name(<400)

Tier 1

Top Level Cell streams out
Tier1.gds

gdsII contains 400 higher gds
number & different layer name

Merged Tier0.gds & Tier1.gds into
single gds file

Invoke Calibre LVS

Run Calibre with 2 decks
(deck A contains original gds number &
layer name, deckB contains 400 higher
gds number & different layer name)

Harder to view highlight errors
since not able to view 400 higher
gds number in layout view

Ex: layerName: Poly, gds
Number: 30

Ex: layerName: Poly2Q, gds
Number: 430

both tiers designed
in 2D

all shapes on second
tier moved to
renumbered gds layers

merging creates one
gds file – looks like
multiple devices share
the same locations
Verification including 3D LVS

- Design contains two tiers (tier0 and tier1) & each tier design is top-level cell
- Don’t flip the design until after the LVS
- Connectivity are done between two tiers through Metal 6
- Sliding either direction tier0 or tier1 will connect both tiers VDD, VSS, and Tier0_out to Tier1_in
- Available pins after sliding: VDD, VSS, in, & out
Next steps

- Preparation of sensors
- Direct Bonding Interconnect (DBI®) by Ziptronix oxide-oxide W-to-W bonding

Collaborative effort on the first 3D detector for light source FNAL : BNL : AGH-UST

Detector wafer for 3D pixel chips from the MPW run (Gabriela Carini, BNL)
Next steps

- **Readiness for DBI bonding**
 - DBI bonding will be done at Ziptronix
 - Chips: H (VIP), I (VICTR), J (VIPIC) designed for DBI bonding
 - Alignment targets required for aligning:
 a) deposition of seed and DBI post metal requires stepper alignment targets
 b) DBI bonding requires bond alignment targets
 - Targets placed in two locations:
 a) stepper alignment targets in the first vertical internal dicing street
 b) DBI bonding targets in the dicing streets above the chip H and below chips I and J
 - Stepper alignment targets include use of M1 on the frame
 - Bonding alignment targets require UR transparency on the frame
 - Targets use Ziptronix layers to be deposited on the frame and sensors

- **Singulation of chips**
 - Fermilab will dice one 3D wafer for to provide chips for bench testing (no detectors) size 5.5×6.3 mm²
 - Fermilab will deliver 5 wafers for singulation and DBI bonding to the BNL sensors (5.6×6.3 mm²)
Next steps

Fermilab, has worked closely with MOSIS/CMP and CMC to establish MPW runs for 3D circuits with commercial silicon brokers. Next submission of 3D chips planned for Spring 2011 via CMP/CMC/MOSIS partnership.

Developments for Future Runs

- Chartered to stop TSVs on 8 inch 0.13 CMOS wafers for the foreseeable future
- Chartered agrees to process wafers from FEOL through M4
- Tezzaron will have SVTC add TSVs from M4 down into the substrate and complete the BEOL processing including the bond interface metalization
- Implication is that space will need to be left open on M1-M4 for the vias to pass through.
- Future potential benefit will be that wafers from other foundries can use the Tezzaron 3D process.

CMP/CMC/MOSIS partner to introduce a 3D-IC process

Grenoble, France, 22 June 2010, CMP/CMC/MOSIS are partnering to offer a 3D-IC MPW service based on Tezzaron’s SuperContact technology and GLOBALFOUNDRIES 130nm CMOS.
Next steps (separate effort)

R&D for photo-sensors

Front-side illumination + shallow junctions = good short wavelength response
Summary

Attempts made to explore the 3D technology has shown:

Successful Implementation of circuits that go beyond the complexity of the test structures and targeting real applications, are achievable.

The processing for 3D is new for the industry (TSV cut, alignment, etc.); many surprises are lurking on the users as the industry sticks to strict rules and these rules are not yet settled for 3D techniques, time needed for processing far exceeds initial estimations.

There is no universal manufacturing technology of integrated circuits 3D – such a situation is expected to maintain in the near future.

It is not unreasonable to expect that with the popularization of 3D techniques, which undoubtedly will happen in the near future, many of the problems find their solution.

Commercial brokers MOSIS / CMP / CMC have recognized opportunities and decided to announce 3D MPW service based on experience Fermilab - the access to the technology will be facilitated.

The first run has currently its wafers being refabricated due to misalignment of reticles (targeting maximum # of chips / wafer) preventing w-to-w bonding – priority at the fab.